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This paper describes an algorithm for computing 
Delaunay triangulations of  arbitrary collections of 
points in the plane. A FORTRAN 77 implementa- 
tion of the scheme is given. For N points distri- 
buted randomly within a square domain, the 
expected run time for the algorithm is approxi- 
mately 0(NS/4). Empirical tests, for N up to 10 000, 
indicate that the actual run time is substantially 
less than this prediction and is generally better 
than 0(NX'a). Excluding the memory required to 
store the co-ordinates, the algorithm requires 
slightly greater than 14N words of  integer memory 
to complete a typical triangulation. The efficiency 
of  the proposed algorithm is verified by comparing 
its performance with other Delaunay triangulation 
procedures. Uses of  the algorithm include the 
generation of  f'mite element meshes and the con- 
struction of contour plots. 
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INTRODUCTION 

The problem of triangulating arbitrary collections of points 
in the plane occurs frequently in engineering and examples 
include mesh generation for finite element analysis and the 
construction of contour plots. 

The theory of Delaunay triangulations has been 
described previously I but will be discussed briefly for 
completeness. To describe the construction of a Delaunay 
triangulation it is convenient to consider the corresponding 
Dirichlet tesselation. The Dirichlet tessellation for five 
points in the plane is shown in Fig. 1 and is denoted by 
the heavy lines. This tessellation divides the plane into a 
collection of polygonal regions whose boundaries are the 
perpendicular bisectors of the lines joining the neigh- 
bouring data points. Each polygon is associated with a 
single data point. Any location within a given polygon is 
closer to the polygon data point than any other data 
point. The Delaunay triangulation that corresponds to the 
Dirichlet tessellation is constructed by connecting all 
data points that share a polygon boundary. The Delaunay 
triangulation for the five points in Fig. 1 is indicated by the 
faint lines. 

In general, the vertices of the Dirichlet tessellation 
occur where three adjacent polygons meet. The three data 
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points associated with each of these' polygons form a 
Delaunay triangle. By definition, each vertex of a 
Dirichlet tessellation a equidistant from each of the 
three data points forming the Delaunay triangle. Thus, 
each vertex of the Dirichlet tessellation is uniquely 
associated with a Delaunay triangle and is located at its 
circumcentre. When the Delaunay triangulation is 
complete, this means that no data point may lie inside the 
circumcircle of any triangle. 

Generally speaking, the Delaunay triangulation 
associated with an arbitrary set of points in the plane is 
unique7 'a In some instances, however, the triangulation 
may not be unique and is said to be degenerate. A very 
simple example which illustrates a degenerate triangulation 
is shown in Fig. 2, where four data points are located at 
the vertices of a square. The single vertex of the Dirichlet 
tessellation is located at the centroid of the square where 
four polygons meet. Two different Delaunay triangulations 
are possible with this configuration and both are equally 
valid. In practical algorithms, the problem of degeneracy is 
easily dealt with by making an arbitrary choice between 
alternative triangulations and does not pose any serious 
difficulties. 

Figure 1. The Diriehlet tessellation and del-triangulation 
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Figure 2. Degenerate Delaunay triangulations 

One of the advantages of Delaunay triangulations, as 
opposed to triangulations constructed heuristically, is that 
they automatically avoid forming triangles with small 
included angles whenever this is possible. Indeed Lawson 2 
and Sibson 3 have shown that Delaunay triangulations are, 
by definition, locally equiangular. This means that for 
every convex quadrilateral formed by two adjacent 
triangles, the minimum of the six angles in the two 
triangles is greater than it would have been if the 
alternative diagonal had been drawn and the other pair 
of triangles chosen. Because of this property, Delaunay 
triangulations are particularly suited to grid generation 
for finite element analysis and contouring algorithms. 

A number of algorithms for construct'mg planar 
Delaunay triangulations have been proposed. 1'2'4-7 For a 
collection of N points, the average and worst case run 
times for the various algorithms are shown in Table 1. 
In engineering applications the average performance of a 
triangulation algorithm is generally more important than 
its worst case performance, since the latter tends to occur 
rarely in practice. 4 Average run times for triangulation 
algorithms are usually deduced by considering collections 
of points located randomly within square or circular 
domains. 

For large sets of points, the results in Table 1 indicate 
that the first algorithm of Lee and Schachter 4 (these 
authors propose two algorithms) is the most efficient. 
This procedure, however, is complicated and difficult to 

implement. FORTRAN code for the Cline and Renka 7 
algorithm has been made publicly available by Renka s 
and a simple FORTRAN 77 implementation of the 
Watson 6 scheme is described in Sloan and Houlsby. 9 
Watson's algorithm, which is quite efficient for triangulating 
up to about 2000 points, has the advantage of being 
particularly simple. This paper describes a simple scheme 
which may be used to compute Delaunay triangulations 
for both small and large sets of points. Analysis of the 
algorithm indicates that its run time is 0(N s/4) for points 
that are distributed randomly within a square domain. 
Empirical comparisons with other procedures suggest that 
it is efficient. 

OUTLINE OF ALGORITHM 

The algorithm combines features of both the Watson 6 and 
Lawson 2 procedures. The Delaunay triangulation is 
assembled by introducing each point, one at a time, into 
an existing Delaunay triangulation which is then updated. 

Following the idea of Watson, the process is started by 
selecting three points to form a 'supertriangle' which 
completely encompasses of all of the data points to be 
triangulated. Initially the Delaunay triangulation is thus 
comprised of a single triangle defined by the supertriangle 
vertices. When a new point P is introduced into the triangu- 
lation, we first find an existing triangle which encloses P 
and form three new triangles by connecting P to each of 
its vertices. Note that during this step the original enclosing 
triangle is deleted and the net gain in the total number of 
triangles is two. After the new point P has been inserted, 
the existing triangulation is updated to a Delaunay triangu- 
lation using the swapping algorithm of Lawson. 2 In this 
procedure all the triangles which are adjacent to the edges 
opposite P are placed on a last-in, first-out stack (ie. a 
maximum of three triangles are placed on the stack initially). 
Each triangle is then unstacked, one at a time, and a check 
is made to determine if P lies inside its circumcircle. If this 
is the case then the triangle containing P as a vertex and 
the adjacent triangle form a convex quadrilateral with the 
diagonal drawn in the wrong direction, and it must be 
replaced by the alternative diagonal to preserve the 
structure of the Delaunay triangulation. The swapping 
procedure replaces two old triangles with two new 
triangles with no net gain in the total number of triangles. 
Once the swap is completed, any triangles which are now 
opposite P are added to the stack (there are a maximum of 
two). The next triangle is then unstacked and the whole 
process is repeated until the stack is empty and this results 
in a new Delaunay triangulation containing the point P. 
An illustration of the swapping procedure is shown in 
Fig. 3. Note that if P lies outside (or on) the circumcircle 
for a stacked triangle, then no action is taken and we 

Table l. Average and worst case running times for various 
Delaunay triangulation algorithms 

Algorithm Average ease Worst ease 

Green and Sl'bson 0(N,/2) 0(N 2) 
Lawson 0(N4t 3 ) 0(N 2) 
Lee and Schachter (1) 0(N log2N) 0(N log2N) 
Lee and Schachter (2) 0(N3t 2) 0(N 2) 
Bowycr 0(N3/2) 0(N 2 ) 
Watson 0(N3/2) 0(N 2) 
Cline and Renka 0(N 4~3) 0(N 2) 
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Figure 3. Lawson's swapping algorithm 

simply skip to the next triangle on the stack. It has been 
shown by Lawson 2 that this iterative algorithm must result 
in a Delaunay triangulation and will always terminate after 
a finite number of swaps. Typically only a few levels of 
swaps are necessary for each edge which is initially opposite 
P and the process is thus efficient. 

After all the points have been added to the triangulation, 
the final Delaunay triangulation is obtained by removing all 
of  the triangles that contain one or more of the super- 
triangle vertices. Any vertex which appears in these deleted 
triangles, but is not a supertriangle vertex, must lie on the 
boundary of the triangulation. Since the insertion of each 
new point into the triangulation creates two new triangles 
the f'mal number of triangles, including those formed with 
the vertices of  the supertriangle, is 2N+ 1. 

IMPLEMENTATION OF ALGORITHM 

An implementation of the algorithm for computing 
Delaunay triangulations is given in Appendix 1. To the best 
of the author's knowledge the code strictly obeys the 
syntax of FORTRAN 77 and thus should be portable. The 
program uses single precision arithmetic which is considered 
to be satisfactory for computation on 32 bit machines. To 
convert the implementation to double arithmetic, all REAL 
declarations should be replaced by DOUBLE PRECISION 
declarations and all real constants in PARAMETER state- 
ments should be replaced by double precision constants. 
The program is comprised of five subroutines (DELTRI, 
BSORT, QSORTI, DELAUN, PUSH) and four short 
function subprograms (TRILOC, POP, EDG, SWAP). Each 
of these will be discussed in turn to illustrate the detail of 
the overall algorithm. 

Subroutine DEL TRI 
This is the only subroutine that needs to be called by the 

user to construct the Delaunay triangulation and controls 
the overall flow of the program. When calling DELTRI, 
NUMPTS is the total number of  points in the data set and 
N is the number of  points to be triangulated. The set of  
points to be triangulated is stored in the integer vector 
LIST prior to calling the subroutine. LIST is of length N 
where N~< NUMPTS. This allows the user to triangulate 
any subset of the total number of points and is particularly 
useful in practical applications. The co-ordinates of the 
points in the data set are stored in the real vectors X and 
Y. Each of these is of length NUMPTS + 3. The integer 
vector BIN is of length NUMPTS, and is required as 
auxiliary storage in subroutines BSORT and DELAUN. 
Throughout the program the structure of the Delaunay 
triangulation is stored in the integer arrays V and E. Both 

of these arrays are two-dimensional, with V containing the 
vertices for each triangle and E containing the adjacent 
triangles. The conventions for this data structure are shown 
for a simple example in Fig. 4. The dimensions of these 
arrays are 1I(3, 2 * N +  1) and E(3, 2 * N +  1). 

At the beginning of subroutine DELTRI, the co- 
ordinates of  the points to be triangulated are normalised to 
the values (3¢, ~ )  according to 

:~p = (Xp - -  XMIN)/DMAX 

.~p = (vp -- YMIN)/DMAX 

where 

DMAX = MAX(XMAX - XMIN, YMAX -- YMIN) 

and 

XMIN = MIN {Xp} 
XMAX = MAX {Xp} 

P e LIST 
YMIN = MIN {yp} 

YMAX = MAX {yp} 
This ensures that the values of ~ and)? lie between 0 and 1 
and proves convenient in the triangulation process. 

After the triangulation has been computed, by calling 
the subroutines BSORT and DELAUN, subroutine DELTRI 
resets the co-ordinates of the points to their original values. 
Upon exiting from DELTRI, the Delaunay triangles are 
numbered from 1 to NUMTRI. Their vertex and adjacent 
triangle lists are stored in V(I, J) and E(I, J) where I = 1, 
3 and J = 1, NUMTRI. 

Subroutine BSOR T 
As described previously, the Delaunay triangulation is 

constructed by inserting each point, one at a time, into an 
existing triangulation. Before updating the triangulation, 
we first need to find an existing triangle which encloses the 
point to be inserted. The searching procedure used in the 
current algorithm is due to Lawson 2 and is implemented in 
the function subprogram TRILOC (to be described later). 
This process is initiated at the triangle most recently 

® 

tr iangle 1 2 3 

i 2 3 

vertices 4 4 i 

2 3 2 

tr iangle i 2 3 

0 I 0 
adjacent 2 0 1 
tr iangles 

3 3 2 

V E 

(1) vertices l is ted anticlockwise (1) adjacent triangles l is ted 
anticlockwise (2) f i r s t  vertex at point of 

contact of f i r s t  and third (2) zero denotes no adjacent 
adjacent triangles tr iangle 

Figure 4. Data structure for triangulation algorithm 
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Figure 5. Bin sorting procedure for points in the plane 

created and marches from one triangle to the next in the 
direction of the point to be inserted. The searching 
algorithm may be made efficient by presorting the points 
so that the distance between each point and its predecessor 
is small, thus reducing the number of  triangles that need to 
be checked. 

Following Lee and Schachter, 4 we ensure that con- 
secutive points are in close proximity by using a bin sort. In 
this procedure, which is implemented by subroutine 
BSORT, the region to be triangulated is covered by a grid 
of  rectangles called bins. Each point is placed in a bin 
according to its co-ordinates and these bins are accessed as 
shown in Fig. 5. Assuming that the points are distributed 
uniformly in the x-y  plane, we expect the number of points 
in each bin to be approximately equal. Empiricial testing 
has indicated that it is sufficient to partition the domain to 
be triangulated into approximately N 1/2 bins. Thus the 
number of bins in the x- and y-directions, NDIV, is chosen 
as N 1/4 (to the nearest integer). Since the normalised 
co-ordinates for the points lie in the range from 0 to 1, the 
x- and y-dimensions of each bin are given by 3¢max/NDIV 
and ~rmx/NDIV. (In practice, these are multiplied by a 
number slightly greater than one to ensure that points with 
the maximum x- or y-co-ordinates fall within a bin.) To 
fred the bin to which each point belongs, we first compute 
the row and column indices (1, J )  according to 

I = INT@ *NDIV*0.99/~rmx) 

J = INT(~¢ * NDIV* 0.99/~max) 

where (3c,33) are the normalised co-ordinates. The bin 
number for the point is then given by 

B I N = I * N D I V + J +  1 (Ieven) 

B I N = ( / +  1 ) * N D I V - - J  ( /odd)  

After each point has been assigned a bin number, subroutine 
BSORT calls a quicksort routine to sort the points in 
ascending sequence of bin number. This completes the 
purpose of subroutine BSORT, since the points in LIST are 
now ordered so that consecutive points are in close 
proximity to one another. In passing, we note that the bin 

sort procedure may be omitted from the overall algorithm 
if desired. This will not affect the function of the program, 
but will decrease its efficiency for cases where the points 
are distributed uniformly in the x-y plane. This aspect will 
be examined further in a later section of the paper. 

Subroutine QSOR T1 
This subroutine sorts the list of points in ascending 

sequence of their bin numbers and is called from subroutine 
BSORT. It uses the quicksort algorithm and is discussed 
fully in a paper by Houlsby and Sloan. 1° 

Subroutine DELA UN 
This routine is the heart of the triangulation algorithm. 

To begin the process, we define the vertices and co- 
ordinates for the supertriangle. The vertices of the super- 
triangle are allocated the numbers NUMPTS + 1, 
NUMPTS + 2 and NUMPTS + 3, and the corresponding 
co-ordinates are set to (--100,--100),  (100,--100) and 
(0,100). The supertriangle is initially stored in the first 
column of the vertex and adjacency arrays, and its vertex 
co-ordinates are stored in the last three locations of the 
X and Y vectors. Since the x- andy-co-ordinates have been 
normalised to lie within the range 0 to 1, all of the points to 
be triangulated are automatically enclosed by the super- 
triangle. The size and shape of the supertriangle may be 
chosen arbitrarily. It is sufficient merely that it contains 
all of the points to be triangulated. It is worth noting, 
however, that if the corners of the supertriangle are very 
close to the window enclosing the points, the boundary of 
the final triangulation may be locally concave. Strictly 
speaking, such a triangulation does not correspond exactly 
to a Delaunay triangulation, since some long thin triangles 
along the boundary have been omitted. In most practical 
applications this is not a disadvantage, but may be avoided 
by locating the vertices of the supertriangle further away 
from the enclosing window. 

After the supertriangle has been defined, subroutine 
DELAUN inserts each of the points into the triangulation 
one at a time. To introduce a new point P, a search is made 
to find an existing triangle T which encloses P. Triangle T 
is then deleted and three new triangles are created by 
connecting P to each of its vertices (Fig. 6). Note that each 
of these triangles is created such that P is the first vertex 
in the vertex array. The net gain in the total number of 
triangles is two, and the additional triangles are numbered 
NUMTRI + 1 and NUMTRI + 2 where NUMTRI is the 
total number of triangles prior to the insertion of P. Next, 
each triangle containing P as a vertex is placed on a last-in, 
first-out stack (provided that the edge opposite P is adjacent 
to some other triangle). With reference to Fig. 6, the 
triangles T, NUMTRI + 1 and NUMTRI + 2 are placed on 
the stack and the triangles opposite P are respectively A, 
B and C. Note that it is unnecessary to maintain a separate 
stack of adjacent triangles which are opposite to P, since 
these can be extracted from the adjacency arrays for the 
stacked triangles. For example, with reference to Fig. 6, 
the adjacent triangle which is opposite to P in triangle T 
is given by A = E(2, T). In general for element I in the 
stack, the opposite adjacent triangle is given by E(2,I ) .  
This completes the initial insertion phase in subroutine 
DELAUN, and we are now ready to update the triangu- 
lation to a Delaunay triangulation using the swapping 
algorithm of Lawson. 2 
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Initial insertion o f  new point into triangulation 

In Lawson's procedure, we remove each triangle from 
the stack one at a time. The notation used in subroutine 
DELAUN is shown in Fig. 7. Triangle L is the triangle 
removed from the stack. Triangle R is the triangle opposite 
point P which is adjacent to L. Triangles L and R share the 
edge V 1 -  V2 and form a quadrilateral with vertices 
P - -  V 2 -  1 , '3 -  V1 (triangle L is to the left of  V 2 -  V1 
and triangle R is to the right of  V2 -- V1). If  the point P is 
inside the circumcircle of triangle R, then the diagonal 
V1 -- V2 needs to be replaced with the diagonal P - -  V3 
to preserve the structure of  the Delaunay triangulation. As 
pointed out by Lawson, 2 this circumcircle check maximises 
the minimum angle occurring in any pair of  adjacent 
triangles forming a convex quadrilateral. If  a swap is 
necessary, as shown in Fig. 7, the vertex and adjacent arrays 
for triangles L and R are updated (again with P as the first 
vertex in the vertex arrays), as are the adjacency arrays for 
triangles A andC. Provided that there is a triangle opposite 
P which is adjacent to L, triangle L is placed on the stack. 
Similarly for triangle R. The next triangle is then removed 
from the stack and the whole process is repeated until the 
stack is empty.  This signifies that the insertion of  P is 
complete and the new triangulation is a Delaunay 
triangulation. 

In subroutine DELAUN, the stacked triangles are stored 
in the vector STACK which has a length of  NUMPTS. This 
dimension was found to be sufficient for triangulating 
10 000 points distributed randomly within a square domain, 
but may be increased if the need arises. 

After all of  the points have been triangulated, subroutine 
DELAUN deletes any triangle which contains one or more 
supertriangle vertices. During this phase the vertex and 
adjacency arrays are updated to fill any blanks created and 
the Delaunay triangles are numbered from 1 to NUMTRI. 
The vertex and adjacent triangle lists are stored in II(1, J)  
and E(1,J) respectively, where 1 =  1, 3 and J =  1, 
NUMTRI. 

Subroutine PUSH 

This subroutine places an item on a last-in, first out 
stack and is easily understood. The maximum permissible 
size of  the stack is MAXSTK, and this is defined in sub- 
routine DELAUN. Subroutine PUSH includes a check to 
determine if there is sufficient space in STACK to complete 
the triangulation. I f  this is not the case, then a diagnostic 
message is printed and the execution of the program is 
halted. 

,r,ono,o j us, 
removod from 

stack / / /  

for triangle R ~ ~  V2 

adjacent triangle 
opposite P 

8 
SWAP 

Figure 7. 

V1 
/ 

/ 

P 

\ 
\ 

V2 

Implementation of  Lawson's swapping algorithm 
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Function POP 
This function removes an item from the top of a last4n, 

first-out stack and is complementary to subroutine PUSH. 
It includes a check to determine if the stack is already 
empty before attempting to remove an item. If  this is so, a 
diagnostic message is printed and the execution of the 
program is halted. 

Function EDG 
This function finds the number of the edge (i.e. the row 

number in the triangle adjacency array) in element I which 
is adjacent to element J. Calls to this function should 
always results in a positive match. If  elements I and J are 
found to be non-adjacent, function EDG prints a diagnostic 
message and terminates the execution of the program. 

Function TRILOC 
This function accepts the x-y co-ordinates of a point 

and f'mds an existing triangle which encloses it. The search 
is started at the triangle which has been most recently 
created, and checks if the point is to the right of any of 
its edges. Since the triangle vertices are always listed in an 
anticlockwise sequence, a point can only be enclosed by a 
triangle if it is to the left of each of its edges. (A point 
which lies on one of the edges of a triangle is also said to be 
enclosed by the triangle.) If  the point lies to the right of  
any edge of the triangle, then the search shifts to the 
triangle which is adjacent to this edge and the process is 
repeated. In this way, the search marches from one triangle 
to the next in the general direction of the point as shown in 
Fig. 8. This ingenious searching algorithm is due to 
Lawson 2 and avoids the need to search all of  the triangles 
in the grid. 

Function SWAP 
This function checks to determine if a pair of adjacent 

triangles form a convex quadrilateral with the maximum 
minimum angle. The adjacent triangles share an edge 
V1--  V2 and form a quadrilateral with vertices 
P - - V 2 - - V 3 - - V 1  as shown in Fig. 9. The diagonal 
V1 -- V2 is replaced with the diagonal P - -  V3 if P lies 
inside the circumcircle for the triangle V 1 -  V2--V3.  
With reference to Fig. 9, we see that P lies inside the 
circumcircle if 2zrr -- 2ra < 2r/3, i.e. it" at +/3 > lr. Similarly, 
P lies outside the circumcircle if a +/3 < ft. The neutral case 

/ 

Figure& 

~ -  search started at 
last formed triangle 

Triangle searching algorithm. 

triangte enclosing 
point 

1 
2r 

1 

Figure 9. Geometry for circumcircle test 

occurs when P lies on the circumcircle and rr = a +/3. 
Since a +/3 < 2zr, a swap needs to be performed if 

sin (a +/3) < 0 

Using the formula 

sin (a +/3) = cos (a) sin (fl) + sin (a) cos 03) 

this condition is equivalent to 

x~3 x2a + YtaY23 

[ ( x 2 3 +  2 2 : 1~  Yla){x2a +Y2a}] 

x ~  yu, --xtp y~, 
× 

[{x~ + y ~ } ( x ~  + y~}] 1/2 

X13 Y23 - -  x23Y 13 + 
[ ( x ~ 3 +  2 2 2 v~ Yla] ' (X23 + Y23}] 

x2pxtp + y ~  y~p 

[ (x~ + y b } ( x ~  + y ~ } ]  1'~< 
0 X 

where 

X13 -- X 1 - -  X3 

X23 = X 2 - -  X3 

X l p  = X 1 - - X  P 

X2p = X 2 - -  X p  

Yla =Yl--Ya 

Y23 =Y2--Ya 

Yte =Yl  --YP 

Y2P = Y 2 - - Y P  

Thus, P lies inside the ckcumcircle if 

(Xla x23 + YlaY23) (X~ Yl/" -- Xtp y ~ )  

< (Yx3 X2a--xlaY2a)(xzp xlv + YlPY2P) 

;his  check, which is due to Cline and Renka, 7 is particularly 
efficient since it requires only ten multiplications, two 
additions and two subtractions. As pointed out by these 
authors, however, round off error may cause an incorrect 
decision to be made when sin (a +/3) approaches zero. This 
condition arises when: 

(1) a +/3 is near ft. 
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(2) a and/3 are both near 0. 
(3) a and/3 are both near lr. 

The first case occurs when P is very close to the circum- 
circle of an adjacent triangle, whilst the second and third 
cases occur when the four vertices of the adjacent triangles 
are nearly coUinear. A complete discussion of this problem 
has been given by Cline and Renka. 7 They established that 
the first condition has no ill-effects on the construction of 
a triangulation, except that the outcome of a swap test is 
not predictable. Allowing for the precision of floating 
point arithmetic, the triangulation produced will still be a 
Delaunay triangulation. The second and third cases, 
however, need to be accounted for as they may result in an 
incorrect triangulation. If a and/3 are both in the vicinity of 
lr, a swap should be performed. The Cline and Renka 7 test, 
which is implemented in the logical function SWAP, is as 
follows: 

STEP 1: Set COSA = xlax2a -t-y13yz3 

COSB = xzv xtp + Yzv Y w 

STEP 2: If COSA >/0 and COSB ~> 0 then 

Set SWAP to FALSE and EXIT 

STEP 3: If  COSA < 0 and COSB < 0 then 

Set SWAP to TRUE and EXIT 

STEP 4: Set SINA = xlaY2a - -  X23 .)' 13 

SINB - x ~  y u~ -- x ~  Y2e 

and 

SINAB = SINA* COSB + SINB* COSA 

STEP 4: If SINAB < 0 then set SWAP to TRUE 
and EXIT. Else, set 
SWAP to FALSE and EXIT. 

Although this algorithm requires a number of additional 
comparisons, it has been found to be relatively efficient as 
well as being numerically stable. 

+ 0(N) operations are required. Thus the average run time 
of the algorithm without the bin sort is O(Na/2). 

The worst ease run time for the algorithm is 0(N")and 
occurs, for example, when the set of data points lie on a 
parabola. This example is discussed in detail by Lee and 
Schachter, 4 and is the worst case for a variety of  Delaunay 
triangulation schemes. 

Excluding the memory required to store the co-ordinates 
of the points and supertriangle vertices, subroutine DELTRI 
requires a total of 14N+ 6 integer words of memory to 
compute and store the Delaunay triangulation. In addition 
to this requkement, subroutine QSORTI needs 64 words of 
locally-declared integer memory for the operation of two 
stacks (this is sufficient to sort a list of 232 points). 

APPLICATIONS 

To assess the validity and efficiency of the proposed 
algorithm, it was applied to sets of points distributed 
randomly within a unit square. Figure 10 illustrates the 
Delaunay triangulation for ten such points. The perform- 
ance of the scheme was measured by constructing Delaunay 
triangulations for sets of 100, 500, 1000, 3000, 4000, 5000 
and 10000 points. The CPU times for the proposed 
algorithm are shown in Table 2, together with the CPU 
times for the implementations given by Sloan and Houlsby 9 
and Renka. 8 These statistics are for the VAX 11/780 with 
full optimisation on the FORTRAN 77 compiler, and were 
measured using the internal clock. Two versions of the 
proposed algorithm were run; one with bin sorting and one 
without bin sorting. To assess the validity of the triangula- 
tion produced, a number of checks were conducted (the 
CPU times for these checks are not included in the timing 
statistics). Firstly, each triangle was tested to ensure that 
no data point lay within its circumcircle (allowing for the 
precision of the machine). Secondly, the area of each 

ANALYSIS OF ALGORITHM 

In the bin sorting phase, the largest amount of work occurs 
in the quicksort procedure which requires an average of 
0(N logzN) operations. The actual triangulation algorithm 
is comprised of two distinct steps; the searching step and 
the swapping step. If the distribution of the points through- 
out the x-y plane is reasonably uniform, there will be 
roughly 0(N 1/2) points in each bin. If  the bins are approxi- 
mately square, 0(N 1/4) triangles will be searched to find the 
triangle enclosing each newly introduced point. The 
swapping algorithm requires roughly a constant number of 
operations for each point. (Empirical tests, for points 
distributed randomly within a square domain, indicate that 
an average of three swaps per point are necessary.) Once 
the triangulation has been completed, 0(N) operations are 
required to delete all of the triangles that contain one or 
more of the supertriangle vertices. Thus, overall, the 
algorithm requires an average of 0(Nlog2N)+ O(N s/4) + 
0(N) + 0(N) operations. For large N, the average run time 
of the scheme is 0(NS/4). 

As noted in a previous section, the bin sorting phase may 
be omitted from the algorithm if desired. The searching 
step will then examine roughly 0(N 1/2) triangles as each 
point is inserted and, overall, an average of 0(N 3/2) + 0(N) Figure 10. 

\ 

Delaunay triangulation for ten such points 
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Table 2. Timing statistics for triangulation algorithms (points distributed randomly over a unit square) 

Watson 
Proposed algorithm Cline and 

Proposed algorithm (Sloan and Renka algorithm 
N algorithm (no bin sort) Houlsby 9 ) (Renka s ) T2/T1 T3/T1 T4/Tt 

T 1 a T 2 a 7 3 a 7"4 a 

100 0.36 0.36 0.41 0.37 1.00 1.14 1.03 
1.07 1.16 1.17 1.28 

500 2.06 2.32 2.68 2.92 1.13 1.30 1.42 
1.01 1.21 !.31 1.26 

1000 4.15 5.35 6.66 7.01 1.29 1.60 1.69 
1.06 1.23 ] .45 1.29 

2000 8.67 12.59 18.18 17.10 1.45 2.10 1.97 
1.10 1.32 1.52 1.24 

3000 13.55 21.53 33.67 28.87 1.59 2.48 2.13 
1.08 1.34 1.48 1.23 

4000 18.50 31.67 51.40 41.18 1.71 2.78 2.23 
1.03 1.29 1.57 1.35 

5000 23.30 42.19 73.01 55.65 1.81 3.13 2.39 
1.06 1.36 1.48 1.30 

10000 48.71 108.48 203.29 !37.45 2.23 4.17 2.82 

Notes: 

1. All times in seconds for VAX 11/780. 
2. 'a' values obtained by assuming times are 0(Na). 
3. Sloan and Houlsby 9 implementation converted to single precision arithmetic. 
4. Renka g implementation run with points presorted in ascending sequence of their x-co-ordinates. 

triangle was computed and a check made to ensure that it 
was positive. Finally, the adjacency arrays were used to 
check that the triangulation obeyed Euler's formula for 
planar graphs, i.e. N - - N e  + N  t =  1 where Ne is the 
number of edges and Nt is the number of triangles. 

The results shown in Table 2 indicate that the perform- 
ance of the proposed algorithm compares favourably with 
that of the Watson 6'9 and Cline and Renka ~'a algorithms. 
In all cases the CPU time required by the proposed scheme 
is less than that of the other schemes. The savings are most 
pronounced in comparison with the Watson algorithm 
which, for N values greater than about 2000, rapidly 
becomes uncompetitive. The Cline and Renka scheme, 
whilst more efficient than the Watson scheme, also requires 
more than twice the amount of CPU time for N greater 
than about 2000. The advantage of the Watson and Cline 
and Renka procedures is that they require less storage than 
the proposed algorithm (slightly greater than 9N and 7N 
words of integer memory respectively). The proposed 
scheme uses more memory because of the need to store the 
element adjacency arrays. In many applications, however, 
such as the construction of contour plots, this information 
is useful and often needs to be generated in any case. The 
1 4 N + 6  words of memory required by the proposed 
algorithm is not considered to be excessive, particularly 
for modern machines with virtual memory, and appears to 
be justified by the increase in efficiency. 

When the proposed algorithm is run without the bin 
sort, it is still relatively efficient. For large sets of points, 
however, the bin sort procedure reduces the total CPU time 
requirement significantly. Thus, provided the points are 
distributed throughout the x-y  plane in a reasonably 
uniform manner, it would appear advisable to include this 
option. 

The observed average case run times for the Watson and 
Cline and Renka schemes are in reasonable agreement with 
the theoretical predictions. As shown in Table 1, the 

average run times for these two algorithms are expected to 
be 0(N a/2) and 0(N 4/3) respectively. Averaging the results 
for all values of N considered, the observed run times are 
approximately 0(N L42) and 0(NL2a). The observed run 
times for the proposed algorithm, however, grow at a rate 
which is substantially less than the theoretical prediction of 
O(NS/4). For values of N between 100 and 10 000, the 
observed run time of the proposed scheme is approximately 
O(N~'°8). Empirical tests indicate that the theoretical 
operation counts are correct. The apparent discrepancy is 
due to the fact that the time required for one iteration of 
the search procedure is substantially less than the time 
required for one iteration of the swapping procedure. For 
the values o ( N  considered, the average number of searches 
conducted is small and most of the time is spent in the 
swapping phase. Thus, overall, the average run time of the 
algorithm is slightly greater than 0(N) unless N is very 
large. Similar arguments hold when the proposed algorithm 
is used without the bin sort, except that the discrepancy 
between the predicted and observed run times is less due 
to the increased number of searches conducted. : 

CONCLUSIONS 

An algorithm has been described for computing Detaunay 
triangulations in the plane. A FORTRAN 77 implementa- 
tion of the scheme is given. Empricial tests indicate that 
the procedure is efficient and may be used for both small 
and large sets of points. 
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APPENDIX ONE: De]aunay Triangulation Program 

C 
C 

SUBROUTINE DELTRI(NUMPTS,N,X,Y,LIST,BIN,V,E,NUMTRI) 
COljj,lmoii~,lj,,lJelIQIim,RoowIwIillm~IImlli~llm~wJwIJJi~mlIwR~NmI11 
C 
C SUBROUTINE DELTRI 

PURPOSE: 

ASSEMBLE DELAUNAY TRIANGULATION FOR COLLECTION OF POINTS IN THE 

PLANE 

INPUT: 

' NUMPTS ' 

I N , 

'X' 

,y, 

'LIST' - 

'BIN' 

I V , 

'E' 

'NUMTRI' - 

OUTPUT: 

TOTAL NUMBER OF POINTS IN DATA SET 

- TOTAL NUMBER OF POINTS TO BE TRIANGULATED 

- N LE NUMPTS 

- X-COORDS OF ALL POINTS IN DATA SET 
- X-COORD OF POINT I GIVEN BY X(I) 

- LIST OF LENGTH NUMPTS+3 
- LAST THREE LOCATIONS ARE USED TO STORE X-COORDS OF 

SUPEHTHIANGLE VERTICES IN SUBROUTINE DELAUN 

- Y-COORDS OF ALL POINTS IN DATA SET 
- Y-COORD OF POINT I GIVEN BY Y(I) 
- LIST OF LENGTH NUMPTS+3 
- LAST THREE LOCATIONS ARE USED TO STORE Y-COORDS OF 

SUPERTRIANGLE VERTICES IN SUBROUTINE DELAUN 

LIST OF POINTS TO BE TRIANGULATED 
LIST OF LENGTH N 
IF N EQ NUMPTS, SET LIST(I)=I FOR I=I,2,...,NUMPTS 

PRIOR TO CALLING THIS ROUTINE 

NOT DEFINED 
LIST OF LENGTH NUMPTS 
USED AS WORKSPACE IN SUBROUTINES BSORT AND DELAUN 

NOT DEFINED 
V HAS DIMENSIONS V(3,2*N+~), WHERE N IS THE NUMBER OF 
POINTS TO BE TRIANGULATED 

NOT DEFINED 

E HAS DIMENSIONS E(3,2*N+1), WHERE N IS THE NUMBER OF 

POINTS TO BE TRIANGULATED 

NOT DEFINED 

'NUMPTS' - UNCHANGED 

'N' - UNCHANGED 

'X' - UNCHANGED, EXCEPT THAT LAST THREE LOCATIONS CONTAIN 

NORMALISED X-COORDS OF SUPERTRIANGLE VERTICES 

'Y' - UNCHANGED, EXCEPT THAT LAST THREE LOCATIONS CONTAIN 
NORMALISED Y-COORDS OF SUPERTRIANGLE VERTICES 

'LIST' - UNCHANGED 
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'BIN' - NOT DEFINED 

'V' - VERTEX ARRAY FOR TRIANGULATION 
- VERTICES LISTED IN ANTICLOCKWISE SEQUENCE 
- VERTICES FOR TRIANGLE J ARE FOUND IN Y(I,J) FOR I=Ip2,3 

AND J=I~2,...,NUMTRI 
- FIRST VERTEX IS AT POINT OF CONTACT OF FIRST AND THIRD 

ADJACENT TRIANGLES 

IE' - ADJACENCY ARRAY FOR TRIANGULATION 
- TRIANGLES ADJACENT TO J ARE FOUND IN E(I,J) FOR I=I,2,3 

AND J=I,2,...,NUMTRI 
- ADJACENT TRIANGLES LISTED IN ANTICLOCKWISE SEQUENCE 
- ZERO DENOTES NO ADJACENT TRIANGLE 

'NUMTRI' - TOTAL Nq~4BER OF TRIANGLES IN FINAL TRIANGULATION 

- BqJMTRI LT 2eN÷1 

SUBROUTINES CALLED: 

BSORT,DELAUN 

PROGRAMMER: 

S W SLOAN 

LAST MODIFIED: 

30 JAN 1986 S W SLOAN 

cJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ 
C 

INTEGER N,I,LIST(m),V(3,1),E(3,1),NUMTRI,BIN(1),P,NUMPTS 

REAL XMIN,XMAX,YMIN,YMAX,DMAX,COOOOI,FACT,X(m),Y(") 

PARAMETEA(COOO01=I.O) 

COMPUTE MIN AND MAX COORDS FOR X AND Y 
COMPUTE MAX OVERALL DIMENSION 

XMIN=X(LIST(1)) 
XMAX=XMIN 
YMIN=Y(LIST(1)) 
YMAX=YMIN 
DO 5 I=2,N 

P=LIST(I) 
XMIN=MIN(XMIN,X(P)) 
XMAX=MAX(XMAX,X(P)) 
YMIN=MIN(YMIN,Y(P)) 
YMAX=MAX(YMAX,Y(P)) 

5 CONTINUE 
DMAX=MAX(XMAX-XMIN,YMAX-YMIN) 

10 

NORMALISE X-Y COORDS OF POINTS 

FACT=COOOOI/DMAX 
DO 10 I:I,N 

P=LIST(I) 
X(P):(X(P)-XMIN)'FACT 
y(P):(Y(P)-YMIN)'FACT 

CONTINUE 

SORT POINTS INTO BINS 
THIS CALL IS OPTIONAL 

CALL BSORT(N,X,Y,XMIN,XMAX,YMIN,YMAX,DMAX,BIN,LIST) 

COMPUTE DELAUNAY TRIANGULATION 

CALL DELAUN(NUMPTS,N,X,Y,LIST,BIN,V,E,NUMTAI) 

RESET X-Y COORD3 TO ORIGINAL VALUES 

3o 

DO 30 I=I,N 
P=LIST(I) 
X(P)=X(P)mDMAX*XMIN 
¥(P)=Y(P)mDMAX+YMIN 

CONTINUE 

END 

Adv. Eng. Software, 1987, Vol. 9, No. 1 43 



C 

C 
C 

C 

C 
C 

C 

C 
C 

C 

C 
C 

C 

C 
C 

C 

C 
C 

C 
C 

C 

C 
C 
C 

C 

C 
C 

C 

C 

C 

C 
C 
C 
C 

C 

C 

C 
C 
C 

C 
C 
C 

C 

C 
C 
C 

C 
C 
C 

C 

C 

C 

C 
C 

C 

C 
C 

C 

C 
C 

C 
C 

C 
C 

C 
C 
C 
C 
C 
C 

C 

C 

C 
C 
C 

C 

C 
C 

C 

C 

C 
C 

SUBROUTINE BSORT(N,X,Y,XMIN,XMAX,YMIN,YMAX,DMAX,BIN,LIST) 

C 
Cm,,,~J,m,~JlJ,Dti.Hum~wewmH1~HHntmmmt1~mwlllm.ewummJ.wwn~itullm~ 

SUBROUTINE BSORT 

PURPOSE: 

SORT POINTS SUCH CONSECUTIVE POINTS ARE CLOSE TO ONE ANOTHER IN THE 

X-Y PLANE USING A BIN SORT 

INPUT: 

'N' 

'X' 

,y, 

'XMIN ' 

'XMAX ' 

'YMIN ' 

'][MAX ' 

'DMAX' 

' BIN ' 

'LIST' 

OUTPUT: 

tNt 

tXt 

tyt 

'XMIN ' 

'XMAX ' 

' YMIN ' 

' YMAX ' 

'UMAX' 

'BIN' 

'LIST' 

- TOTAL NUMBER OF POINTS TO BE TRIANGULATED 

- N LE NUMPTS, WHERE NUMPTS IS TOTAL NUMBER OF POINTS IN 
DATA SET 

- X-COORDS OF ALL POINTS IN DATA SET 
- IF POINT IS IN LIST,THE COORDINATE MUST BE NORMALISED 

ACCORDING TO X=(X-XMIN)/DMAX 
- X-COORD OF POINT I GIVEN BY X(I) 
- LIST OF LENGTH NUMPTS+3 

- LAST THREE LOCATIONS ARE USED TO STORE X-COORDS OF 
SUPERTRIANGLE VERTICES IN SUBROUTINE DELAUN 

- Y-COORDS OF ALL POINTS IN DATA SET 

- IF POINT IS IN LIST,THE COORDINATE MUST BE NORMALISED 
ACCORDING TO Y=(Y-YMIN)/DMAX 

- Y-COORD OF POINT I GIVEN BY Y(1) 

- LIST OF LENGTH NUMPTS÷3 
- LAST THREE LOCATIONS ARE USED TO STORE Y-COORDS OF 

SUPERTRIANGLE VERTICES I N  SUBROUTINE DELAUN 

- MIN X-COORD OF POINTS IN LIST 

- MAX X-COORD OF POINTS IN LIST 

- MIN Y-COORD OF POINTS IN LIST 

- MAX Y-COORD OF POINTS IN LIST 

- DMAX =MAX ( XMAX-XMIN, YMAX -YMIN ) 

- NOT DEFINED 
- LIST OF LENGTH NUMPTS 

- LIST OF POINTS TO BE TRIANGULATED 

- LIST OF LENGTH N 

- UNCHANGED 

- UNCHANGED 

- UNCHANGED 

- UNCHANGED 

- UNCHANGED 

- UNCHANGED 

- UNCHANGED 

- UNCHANGED 

- BIN NUMBERS FOR EACH POINT TO BE TRIANGULATED 
- LIST OF LENGTH NUMPTS 

- LIST OF POINTS TO BE TRIANGULATED 
- POINTS ORDERED SUCH THAT CONSECUTIVE POINTS ARE CLOSE 

TO ONE ANOTHER IN THE X-Y PLANE 

SUBROUTINES CALLED: 

QSORTI 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

c 
C PROGRAMMER: 
C - - - - - - - -  . . . . . .  - -  

C 
c S W SLOAN 
C 
C LAST MODIFIED: 
C 
C 
C 30 JAN 1986 S W SLOAN 
cJJIJJJIJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJIJJJJJJ 
C 

INTEGER LIST(1),BIN(m),N,I,J,K,P,NDIV 

REAL X(m),Y(m),FACTX,FACTY,XMIN,XMAX,YMIN,YMAX,DMAX 

COMPUTE NUMBER OF BINS IN X-Y DIRECTIONS 
COMPUTE INVERSE OF BIN SIZE IN X-Y DIRECTIONS 

NDIV=NINT(REAL(N)mIO.25) 
FACTX=REAL(NDIV)/((XMAX-XMIN)ml.OI/DMAX) 
FACTY=REAL(NDIV)/((YMAX-YMIN)mI.OI/DMAX) 

ASSIGN BIN NUMBERS TO EACH POINT 

DO 10 K=I,N 
P:LIST(K) 
I=INT(Y(P)UFACTY) 
J=INT(X(P)mFACTX) 
IF(MOD(I92).E0.O)THEN 

BIN(P)=IINDIV+J÷I 
ELSE 

BIN(P)=(I+I)mNDIV-J 
END IF 

10 CONTINUE 

SORT POINTS IN ASCENDING SEQUENCE OF BIN NUMBER 

CALL QSORTI(N,LIST,BIN) 

END 

SUBROUTINE OSORTI(N,LIST,KEY) 

C 
ClJJlJJJJJJJJJJJJJiJJJJJJlJJJJJJJJJJJJJJJJJJJJJJJlJJJJJiJJl iJJJJJJJJJJJJ 
C SUBROUTINE GSORTI 
C 

PURPOSE: 

ORDER LIST OF INTEGERS IN ASCENDING SEQUENCE OF THEIR INTEGER KEYS 

INPUT: 

'N' 

'LIST' 

'KEY' 

OUTPUT~ 

iN '  

'LIST' 

,KEY, 

NOTES • 

- POSITIVE INTEGER GIVING LENGTH OF LIST 

- LIST OF INTEGERS TO BE SORTED 
- LIST OF LENGTH N 

- LIST OF INTEGER KEYS 
- LIST OF LENGTH GE N 

- UNCHANGED 

- LIST OF INTEGERS SORTED IN ASCENDING SEOUENCE OF THEIR 
KEYS 

- UNCHANGED 

- USES QUICKSORT ALGORITHM~ EFFICIENT FOR 'N' VALUES GREATER THAN 
ABOUT 12 (ALTHOUGH MAY BE SYST~H DEPENDENT) 

- ROUTINE SORTS LISTS UP TO LENGTH 2mmMAXSTK 

PROGR/24MERz 
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C ........... 

c 
c G T HOULSBY 
c 
c LAST MODIFIED: 
C ............. 

c 
C 7 MAY 1985 
C 

S W SLOAN 

cjjjjjjjjjjj|jjjjjJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ 
c 

INTEGER LIST( m), KEY ( w), N, LL, LR, LM, NL, NR, LTEMP, STKTOP,MAXSTK, GUESS 

C 
PARAMETE R (MAXSTK = 32 ) 

C 
INTEGER LSTACK(MAXSTK), RSTACK(MAXSTK) 

C 
LL= 1 
LR=N 
ST](TOP= 0 

10 IF(LL.  LT. LR) THEN 
NL:LL 
NR=LR 
LM=(LL+LR)/2 
GUESS=KEY (LIST(LM)) 

c 
C FIND KEYS FOR EXCHANGE 
C 

20 IF (KEY (LIST(NL)). LT. GUESS) THEN 
NL=NL+I 
GOTO 20 

END IF 
30 IF (GUESS. LT.KEY (LIST(NR)) ) THEN 

NR=NR- 1 

GOTO 30 
END IF 
IF(HL. LT. (NR- I ))THEN 

LTEMP= LI ST (NL) 
LIST(HL) =LIST(NR) 
LIST(NR) =LT~P 
NL=NL+I 
NR=NR-I 
GOTO 20 

END IF 
C 
C DEAL WITH CROSSING OF POINTERS 
C 

IF(NL. LE. NR) THEN 
IF(NL. LT. NR) THEN 

LTEMP= LI ST (NL) 
LIST(NL) =LIST(NR) 
LIST( NR ) =LTEMP 

END IF 
NL=NL+I 
NR=NR-1 

END IF 

C 
C SELECT SUB-LIST TO BE PROCESSED NEXT 

C 
STKTOP=STKTOP+ 1 
IF(  NR • LT, LM ) THEN 

LSTACK ( STK TOP) =HL 
RSTACK (STKTOP) =LR 
LR=NR 

ELSE 
LSTACK ( STK TOP ) = LL 
RSTACK ( STK TOP) = NR 
LL=NL 

END IF 
GOTO 10 

END IF 
C 
C PROCESS ANY STACKED SUB-LISTS 

C 
IF ( STKTOP • NE. 0 ) THEN 

LL=LSTACK ( STKTOP ) 
LR=RSTACK(STKTOP) 
STKTOP=STKTOP- 1 
GOTO 10 

END IF 

END 
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c 
SUBROUTINE D ELAUN ( NUM PTS, N, X, Y, LI ST, STACK, V, E, NUMTRI ) 

C 

C 
C SUBROUTINE DELAUN 
C 
C PURPOSE : 

C ..... --- 

C 
C ASSEMBLE DELAUNAY TRIANGULATION 

C 
C INPUT : 
C . . . . . .  

C 
C 'NUMPTS' - TOTAL NUMBER OF POINTS IN DATA SET 

C 
C 'N' - TOTAL NUMBER OF POINTS TO BE TRIANGULATED 
C - N LE NUMPTS 

C 
C 'X' - X-COORDS OF ALL POINTS IN DATA SET 

C - X-COORD OF POINT I GIVEN BY X(I) 
C - IF POINT IS IN LIST, COORDINATE MUST BE NORMALISED 
C SUCH THAT X=(X-XMIN)/DMAX 
C - LIST OF LENGTH NUMPT-~-3 
C - LAST THREE LOCATIONS ARE USED TO STORE X-COORDS OF 
C SUPERTRIANGLE VERTICES IN SUBROUTINE DELAUN 
C 
C 'Y' - Y-COORDS OF ALL POINTS IN DATA SET 

C - Y-COORD OF POINT I GIVEN BY Y(I) 

C - IF POINT IS IN LIST, COORDINATE MUST BE NORMALISED 
C SUCH THAT Y=(Y-YMIN)/DMAX 

C - LIST OF LENGTH NUMPTS+3 

C - LAST THREE LOCATIONS ARE USED TO STORE Y-COORDS OF 
C SUPERTRIANGLE VERTICES IN SUBROUTINE DELAUN 

C 
C 'LIST' - LIST OF POINTS TO BE TRIANGULATED 
C - POINTS ARE ORDERED SUCH THAT CONSECUTIVE POINTS ARE 
C CLOSE TO ONE ANOTHER IN THE X-Y PLANE 
C - LIST OF LENGTH N 
C 
C 'STACK' - NOT DEFINED 

C - LIST OP LENGTH NUMPTS 
C - USED AS WORKSPACE 

C 
C 'V' - NOT DEFINED 

C - V HAS DIMENSIONS V(3,RmN÷I), WHERE N IS THE NUMBER OF 

C POINTS TO BE TRIANGULATED 
C 
C 'E' - NOT DEFINED 

C - E HAS DIMENSIONS E(3,2WN+I), WHERE N IS THE NUMBER OF 
C POINTS TO BE TRIANGULATED 
C 
C 'NUMTRI' - NOT DEFINED 

C 
C OUTPUT: 

C ....... 

C 
C ' N U M P T S '  - UNCHANGED 
C 
C 'N' - UNCHANGED 

C 
C 'X' - UNCHANGED 

C 
C 'Y ' - UNCHANGED 
C 
C 'LIST' - UNCHANGED 
C 
C 'STACK' - NOT DEFINED 

C 
C 'V' - VERTEX ARRAY FOR TRIANGULATION 
C - VERTICES LISTED IN ANTICLOCKWISE SEQUENCE 

C - VERTICES FOR TRIANGLE J ARE FOUND IN V(I,J) FOR I=1,2,3 

C AND J= 1,2, • • • ~NUMTRI 

C - FIRST VERTEX IS AT POINT OF CONTACT OF FIRST AND THIRD 
C ADJACENT TRIANGLES 
C 

C 'E' - ADJACENCY ARRAY FOR TRIANGULATION 

C - TRIANGLES ADJACENT TO J ARE FOUND IN E(I,J) FOR I=1,2,3 
C J=I,2,...,NUMTRI 

C - ADJACENT TRIANGLES LISTED IN ANTICLOCKWISE SEQUENCE 
C - ZERO DENOTES NO ADJACENT TRIANGLE 
C 
C 'NUMTRI' - NUMBER OF TRIANGLES IN FINAL TRIANGULATION 

C - NUMTRI L T  2 m N + l  
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C 
C SUBROUTINES CALLED: 
C ................... 

C 
C PUSH 
C 
C FUNCTIONS CALLED: 
C ................. 

C 
C TRILOC,EDG,SWAP,POP 
C 
C PROGRAMMER: 
C ........... 

C 
C S W SLOAN 
C 
C LAST MODIFIED: 

C 
C 
C 30 JAN 1986 S W SLOAN 
C 
cJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ 
C 

INTEGER V(3pa),N,I,T,LIST(W),NUMTRI,P,E(3pe),MAXSTK,TOPSTK, 
+ VI,V2,V3,L,R,POP,ApB,C,ERL,ERA,ERB,EDG,TRILOC,N~PTS, 
+ TSTRT,TSTOP,STACK(m) 

REAL X(u),Y(1),XP,YP,CO0000,COOIO0 

LOGICAL SWAP 

PARAHETER(CO0000=0.O, 
+ C00100=100.0) 

DEFINE VERTE~ AND ADJACENCY LISTS FOR SUPERTRIANOLE 

VI=NUMPTS+I 
V2=NUMPTS+2 
V3=NUHPTS+3 
V(1,1)=Vl 
V(2,1)=V2 
V(3,1)=V3 
E(1~1)=0 
E(2,1)=0 
E(3,1)=0 

SET COORDS OF SUPERTRIANGLE 

X(V1)=-COOIO0 
X(V2)= C00100 
x(v3)= COOOOO 
Y(V1)=-COOIO0 
Y(V2)=-CO0100 
Y(V3)= C00100 

LOOP OVER EACH POINT 

N~TRI=I 
TOPSTK=O 
MAXSTK=N~IPTS 
DO 100 I=I,N 

P=LIST(I) 
XP=X(P) 
YP=Y(P) 

LOCATE TRIANGLE IN WHICH POINT LIES 

T=TRILOC(XP,YP,X,X,V,E~WdMTRI) 

CREATE N~ VERTEX AND ADJACENCY LISTS FOR TRIANGLE T 

A=E(1,T) 
B=E(2,T) 
C=E(3,T) 
Vl=V(lpT) 
V2=V(2,T) 
V3=V(3,T) 
V(1,T)=P 
V(2,T)=V1 
V(3,T)=V2 
E(I~T)=NUHTRI+2 
E(2,T)=A 
E(3,T)=NUMTRI+I 

CREATE NEW TRIANGLES 
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50 

NUMTRI=NUMTRI+I 
V(I,NDI4TRI)=P 
V(2,N~4TRI)=V2 
V(3,NtR4TRI)=V3 
E(I,N~4TRI)=T 
E(2,NUMTRI)=B 
E(3,Nt~4TRI)=NUMTRI+I 
NUMTRI=ND~4TRI+I 
V(I,NUMTRI)=P 
V(2,NUMTRI)=V3 
V(3,NIB4TRI)=VI 
E(I,NUMTRI)=NUMTRI-I 
E(2,NUMTRI)=C 
E(3,NUMTRI):T 

PUT EACH EDGE OF TRIANGLE T ON STACK 
STORE TRIANGLF~ ON LEFT SIDE OF EACH EDGE 
UPDATE ADJACENCY LISTS FOR ADJACENT TRIANGLES 
ADJACENCY LIST FOR ELEMENT A DOES NOT NEED TO BE UPDATED 

IF(A.NE.O)THEN 
CALL PUSH(T,MAXSTK,TOPSTK,STACK) 

END IF 
IF(B.NE.O)THEN 

E(EDG(B,T,E),B)=NUMTRI-I 
CALL PUSH(NUMTRI-I,MAXSTK,TOPSTK,STACK) 

END IF 
IF(C.NE.O)THEN 

E(EDG(C,T,E),C):NUMTRI 
CALL PUSH(NUMTRI,MAXSTK,TOPSTK,STACK) 

END IF 

LOOP WHILE STACK IS NOT EMPTY 

IF(TOPSTK.GT.0)THEN 
L=POP(TOPSTK,STACK) 
R=E(2,L) 

CHECK IF NEW POINT IS IN CIRCUMCIRCLE FOR TRIANGLE R 

ERL=EDG(R,L,E) 
ERA=MOD(ERL,3)+I 
ERS=MOD(ERA,3)÷I 
VI=V(ERL,R) 
V2=V(ERA,R) 
V3=V(ERB,R) 
IF(SWAP(X(VI),Y(VI),X(V2),Y(V2),X(V3),Y(V3),XP,yP))THEN 

NEW POINT IS INSIDE CIRCUMCIRCLE FOR TRIANGLE R 
SWAP DIAGONAL FOR CONVEX qUAD FORMED BY P-V2-V3-V1 

A:E(ERA,R) 
B=E(ERB,R) 
C=E(3,L) 

UPDATE VERTEX AND ADJACENCY LIST FOR TRIANGLE L 

V(3,L)=V3 
E(2~L)=A 
E(3,L)=R 

UPDATE VERTEX AND ADJACENCY LIST FOR TRIANGLE R 

V(1,R)=P 
V(2,R)=V3 
V(3,R)=Vl 
E(1,R)=L 
E(2,R)=B 
E(3,R)=C 

PUT EDGES L-A AND R-B ON STACK 
UPDATE ADJACENCY LISTS FOR TRIANGLES A AND C 

IF(A°NE.0)THEN 
E(EDG(A,R,E),A)=L 
CALL PUSH(L,MAXSTK, TOPSTK p STACK) 

END IF 
IF(B° NE.O)THEN 

CALL PUSH(R,MAXSTK, TOPSTK, STACK) 
END IF 
IF(C. NE. O) THEN 

E(EDG(C)L,E) ,C) =R 
END IF 

END IF 
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GOTO 50 
END IF 

100 CONTINUE 

CHECK CONSISTENCY OF TRIANGULATION 

IF(NUMTRI.NE.21N+I)THEN 
WRITE(6,'(''OtUmERROR IN SUBROUTINE DELAUNmW~'') ') 
WRITE(6,'('' m'tINCORRECT NUMBER OF TRIANGLS FORMEDI~n'*) ') 
STOP 

END IF 

REMOVE ALL TRIANGLES CONTAINING SUPERTRIANGLE VERTICES 
FIND FIRST TRIANGLE TO BE DELETED (TRIANGLE T) 
UPDATE ADJACENCY LISTS FOR TRIANGLES ADJACENT TO T 

DO 120 T=I,NUMTRI 
IF((V(I,T).GT.NUMPTS).OR. 

+ (V(2,T).GT.NUMPTS).OR. 
+ (V(3,T).GT.NUMPTS))THEN 

DO 110 I=1,3 
A=E(I,T) 
IF(A.NE.O)THEN 

E(EDO(A,T,E),A)=O 
END IF 

110 CONTINUE 
GOTO 125 

END IF 
120 CONTINUE 
125 TSTRT=T+I 

TSTOP=NUMTRI 
N~TRI=T-I 

REMOVE TRIANGLES 

DO 200 T=TSTRT,TSTOP 
IF((V(I,T).OT.NUMPTS).OR. 

+ (V(2,T).GT.NL~PTS).OR. 
+ (V(3,T).GT.NVMPTS))THEN 

TRIANGLE T IS TO BE DELETED 
UPDATE ADJACENCY LISTS FOR TRIANGLES ADJACENT TO T 

130 

DO 130 I=1,3 
A=E(I,T) 
IF(A.NE.O)THEN 

E(EDG(A,T,E),A)=O 
END IF 

CONTINUE 
ELSE 

TRIANGLE T IS NOT TO BE DELETED 
PUT TRIANGLE T IN PLACE OF TRIANGLE NVMTRI 
UPDATE ADJACENCY LISTS FOR TRIANGLES ADJACENT TO T 

NUMTRI=NUMTRI+I 
DO 140 I=I,3 

A=E(I,T) 
E(I,NUMTRI)=A 
V(I,NUMTRI)=V(I,T) 
IF(A.NE.O)~EN 

E(~(A,T,E),A)=NUMTRI 
END IF 

140 CONTINUE 
ENDIF 

200 CONTINUE 

END 

SUBROUTINE PUSH ( ITEM, MAXSTK, TOPSTK, STACK ) 
C 
CI,i~llIIii~I~NJII|OIR,IImllmQIQIW~JmllIIJlJllli~ll,lJWm,JlJi,,J,,IRm 

c 
c SUBROUTINE PUSH 
C 
C PURPOSE : 
C 
C 
C 
C 
C 
C 

PLACE ITEM ON LIFO STACK AND INCR~4ENT STACK SIZE 

INPUT: 
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C 
C 
C 
C 

C 

C 
C 

C 
C 
C 
C 
C 
C 
C 

C 
C 

C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

C 

'ITEM' - ITEM TO BE PLACED AT TOP OF LIFO STACK 

'MAXSTK' - MAX SIZE OF STACK 

'TOPSTK' - POINTER INDICATING CURRENT SIZE OF STACK 
- MUST BE LT MAXSTK WHEN THIS ROUTINE IS CALLED 

- LIFO STACK 'STACK' 

OUTPUT: 

'ITEM' - UNCHANGED 

'MAXSTE' - UNCHANGED 

'TOPSTK' - POINTER INDICATING CURRENT SIZE OF STACK 
- NEW VALUE = OLD VALUE ÷ I 

'STACK' - LIFO STACK WITH ITEM ADDED 
- STACK(TOPSTK)=IT~ 

PROGRAMMER: 

S W SLOAN 

LAST MODIFIED: 

30 JAN 1986 S W SLOAN 

cJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ 
c 

INTEGER TOPSTK,MAXSTK,STACK( i), ITEM 
C 

TOPSTK = TOPSTK+ 1 
IF ( TOP STK • GT. MAXSTK ) THEN 

WRITE(6, ' ( ' ' OIIeERROR IN SUBROUTINE PUSH mlm ' ' ) ' ) 
WRITE(6, ' ( ' ' ImlSTACK OVERFLOW ~i ' ' ) ' ) 
STOP 

ELSE 
STACK (TOPSTK) =ITEM 

END IF 

END 

FUNCTION POP (TOPSTK, STACK) 

C 
CI~glW,lJIImIIm~I~li~J~m~IDilli,~II~JnQ~ JllmJi~Ji~RimDJJQWlJlgi~IIme~i 

C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 
C 

C 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

FUNCTION POP 

PURPOSE: 

R~4OVE ITEM FROM LIFO STACK JL~D DECR~4ENT STACK SIZE 

IN PU T: 

'TOPSTK' - POINTER INDICATING CURRENT SIZE OF STACK 
- MUST BE OT ZERO WHEN THIS FUNCTION IS CALLED 

'STACK' - LIFO STACK 

'POP' - NOT DEFINED 

OUTPUT: 

'TOPSTK' - POINTER INDICATING SIZE OF STACK 

- NEW VALUE = OLD VALUE - I 

'STACK' - UNCHANGED 

'POP' - ITEM AT TOP OF STACK WHEN FUNCTION WAS CALLED 

PROGRAMMER: 
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c 
C 
c 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 

C 
C 

c 
C 
C 
c 
C 
c 
C 
C 
C 
C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
C 
C 
c 
C 

C S W SLOAN 
C 
C LAST MODIFIED: 
C 
C 
C 30 JAN 1986 S W SLOAN 

C 

C 
INTEGER POP,TOPSTK,STACK(~) 

C 
IF(TOPSTK.GT.0)THEN 

POP=STACK(TOPSTK) 
TOPSTK=TOPSTK-1 

ELSE 
WRITE(6,'("OI~IERROR IN FUNCTION POP~I~') ') 
WRITE(6,'(" ~'SSTACK UNDERFLOWe~s'') ') 
STOP 

END IF 

END 

FUNCTION EDG(L,K,E) 
C 
CJlJOmlJllIR~I,ii~JIQII,i,lm,g,l,i~I,,,i,,~IQIIimW~i~llJ~llIQiJ%lii~I 

C 
c FUNCTION EDO 

PURPOSE: 

FIND EDGE IN TRIANGLE L WHICH IS ADJACENT TO TRIANGLE K 

INPUT: 

ILl 

rEV 

NUMBER OF TRIANGLE 

NUHBER OF ADJACENT TRIANGLE 

ADJACENCY ARRAY FOR TRIANGULATION 
TRIANGLES ADJACENT TO J ARE FOUND IN E(I,J) FOR I=I,2,3 

ADJACENT TRIANGLES LISTED IN ANTICLOCKWISE SEQUENCE 
ZERO DENOTES NO ADJACENT TRIANGLE 
E HA3 DIMENSIONS E(3,21N+1), WHERE N IS THE NUMBER OF 

POINTS TO BE TRIANGULATED 

NOT DEFINED 'EDG' 

OUTPUT: 

'L' - UNCHANGED 

'K t - UNCHANGED 

'E' - UNCHANGED 

'EDG' - N~BER OF EDGE IN TRIANGLE L WHICH IS ADJACENT TO 
TRIANGLE K 

- E(EDO, L) =K 

PROGRAMMER : 

S W 5LOAN 

LAST MODIFIED: 

30 JAN 1986 S W SLOAN 

cJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ 
C 

INTEGER L,K,I,E(3, m),EDG 

DO 10 I=1,3 
IF(E(I,L).EQ.K)THEN 

EDG=I 
RETURN 

END IF 
10 CONTINUE 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

WRITE(6,'("OneERROR IN FUNCTION EDGmmm") ') 
WRITE(6,'('' mmmEL~ENTS NOT ADJACENTImm") ') 
STOP 

END 

FUNCTION TRILOC(XP,YP,X,Y,V,E,NUMTRI) 
CJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ" 

FUNCTION TRILOC 

PURPOSEz 

LOCATE TRIANGLE WHICH ENCLOSES POINT WITH COORD3 (XPpYP) USING 
LANSON'S SEARCH 

INPUT: 

'XP,YP' 

tX,y' 

tVt 

VEt' 

'NUMTRI' - 

'TRILOC' - 

OUTPUT: 

'XP,YP' 

'XpY' 

tV1 

X-Y COORDINATES OF POINT 

X-Y COORDINATES OF POINTS AND SUPERTRIANGLE VERTICES 

LISTS OF LENGTH NUMPTS+3 
LAST THREE LOCATIONS USED TO STORE COORDS OF 
SUPERTRIANGLE 

VERTEX ARRAY FOR TRIANGULATION 
VERTICES LISTED IN ANTICLOCk'WISE SEQUENCE 
VERTICES FOR TRIANGLE J ARE FOUND IN V(I,J) FOR I=I,2p3 
FIRST VERTEX IS AT POINT OF CONTACT OF FIRST AND THIRD 
ADJACENT TRIANGLES 
V HAS DIMENSIONS V(3,2"N+I), WHERE N IS THE NUMBER OF 

POINTS TO BE TRIANGULATED 

ADJACENCY ARRAY FOR TRIANGULATION 
TRIANGLES ADJACENT TO J ARE FOUND IN E(I,J) FOR I=I,2,3 
ADJACENT TRIANGLES LISTED IN ANTICLOCKWISE SEQUENCE 
ZERO DENOTES NO ADJACENT TRIANGLE 
E HAS DIMENSIONS E(3,2"N÷1), WHERE N IS THE NUMBER OF 
POINTS TO BE TRIANGULATED 

NUMBER OF TRIANGLES IN TRIANGULATION 

NOT DEFINED 

- UNCHANGED 

- UNCHANGED 

- UNCHANGED 

'E' - UNCHANGED 

'NL~TRI' - UNCHANGED 

'TRILOC' - NUMBER OF TRIANGLE CONTAINING POINT WITH COORDS (XP,YP) 

PROGRAMMER: 

S W SLOAN 

LAST MODIFIED: 

30 JAN 1986 S W SLOAN 

cJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ 
C 

INTEGER V(3~I),E(3~i)~NUMTRItVIgV2,I,T,TRILOC 

REAL X(I),y(1),XP,yP 

T:ND~TRI 
10 CONTINUE 

DO 20 I:1,3 
VI:V(I,T) 
V2:V(MOD(I,3)+I,T) 
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IF((Y(VI)-YP)*(X(V2)-XP).GT.(X(VI)-XP)*(Y(V2)-YP))THEN 
T=E(I,T) 
OOTO 10 

END IF 
20 CONTINUE 

TRIANGLE HAS BEEN FOUND 

TRILOG=T 

END 

FUNCTION SWAP(XI,YI,X2,Y2,X3,Y3,XP,YP) 

cJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ 
C 
C FUNCTION SWAP 
C 
C PURPOSE: 
C . . . . . . . .  

C 
C CHECK IF POINT WITH COORDS (XP,YP) LIES INSIDE THE CIRCUMCIRCLE 
C FOR THE TRIANGLE WITH COORDS (X],YI), (X2,Y2), (X3,Y3) USING 
C THE ALGORITHM OF CLINE AND RENKA WHICH ALLOWS FOR ROUNDOFF ERROR 
C 
C 
C 

INPUT: 

'XlpY1' 
'X2,Y2' 
'X3,Y3' 

'XP~YP' 

'SWAP' 

OUTPUT: 

'XI,YI' 
'X2,Y2' 
'X3,Y3' 

'XP,YP' 

'SWAP' 

- COORDS OF VERTICES DEFINING TRIANGLE 
- VERTICES LISTED IN ANTICLOCKWISE SEQUENCE AND ORDERED 

SUCH THAT P-V2-V3-VI DEFINE A QUADRILATERAL 

- COORDS OF POINT TO BE TESTED 

- NOT DEFINED 

- UNCHANGED 

- UNCHANGED 

- SET TO .TRUE. IF POINT LIES INSIDE CIRCUMCIRCLE 
- SET TO .FALSE. IF POINT LIES ON OR OUTSIDE CIRCU~IRCLE 

PROGRAMMER: 

S W SLOAN 

LAST MODIFIED: 

30 JAN 1986 S W SLOAN 

cJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ 
C 

REAL XI,Y1,X2,Y2,X3,Y3,XP~YP,X13,Y13,X23,Y23,XIP,yIP,X2P,Y2P,COSA, 
+ COSB,SINA,SINE,CO000O 

LOGICAL SWAP 

PARAMETER(COO000:O.O) 

X13=X1-X3 
YI3=YI-Y3 
X23=X2-X3 
¥23=¥2-¥3 
XIF=X1-XP 
YIP=yI-YP 
X2P=X2-XP 
Y2P=Y2-YP 
COSA=XI31X23+YI3*Y23 
COSB=X2PXIF+YIPOY2P 
IF((COSA.GE.COOOOO).AND.(COSB.GE.COOOOO))THEN 

SWAP=.FALSE. 
ELSEIF((COSA.LT.COOOOO).AND.(COSB.LT.COOOOO))THEN 

SWAP=.TRUE. 
ELSE 
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ENDIF 

END 

SINA=X 13e¥23-X23eY 13 
SINB--X2PeY I P-X I PeY2P 
IF ( ( SINAmCOSB+S INBmCOS A ) • LT. C00000 ) THEN 

SWAP= • TRUE. 
ELSE 

SWAP=. FALSE. 
END IF 

Adv. Eng. Software, 1987, Vol. 9, No. 1 55 


