
A fast algorithm for constructing Delaunay
triangulations in the plane

S. W. SLOAN

Department of C~vil Engineering and Surveying, The University of Newcastle, NSW 2308, Australia

This paper describes an algorithm for computing
Delaunay triangulations of arbitrary collections of
points in the plane. A FORTRAN 77 implementa-
tion of the scheme is given. For N points distri-
buted randomly within a square domain, the
expected run time for the algorithm is approxi-
mately 0(NS/4). Empirical tests, for N up to 10 000,
indicate that the actual run time is substantially
less than this prediction and is generally better
than 0(NX'a). Excluding the memory required to
store the co-ordinates, the algorithm requires
slightly greater than 14N words of integer memory
to complete a typical triangulation. The efficiency
of the proposed algorithm is verified by comparing
its performance with other Delaunay triangulation
procedures. Uses of the algorithm include the
generation of f'mite element meshes and the con-
struction of contour plots.

Key Words: Delaunay, triangulation, algorithm.

INTRODUCTION

The problem of triangulating arbitrary collections of points
in the plane occurs frequently in engineering and examples
include mesh generation for finite element analysis and the
construction of contour plots.

The theory of Delaunay triangulations has been
described previously I but will be discussed briefly for
completeness. To describe the construction of a Delaunay
triangulation it is convenient to consider the corresponding
Dirichlet tesselation. The Dirichlet tessellation for five
points in the plane is shown in Fig. 1 and is denoted by
the heavy lines. This tessellation divides the plane into a
collection of polygonal regions whose boundaries are the
perpendicular bisectors of the lines joining the neigh-
bouring data points. Each polygon is associated with a
single data point. Any location within a given polygon is
closer to the polygon data point than any other data
point. The Delaunay triangulation that corresponds to the
Dirichlet tessellation is constructed by connecting all
data points that share a polygon boundary. The Delaunay
triangulation for the five points in Fig. 1 is indicated by the
faint lines.

In general, the vertices of the Dirichlet tessellation
occur where three adjacent polygons meet. The three data

Accepted April 1986. Discussion closes March 1987.

points associated with each of these' polygons form a
Delaunay triangle. By definition, each vertex of a
Dirichlet tessellation a equidistant from each of the
three data points forming the Delaunay triangle. Thus,
each vertex of the Dirichlet tessellation is uniquely
associated with a Delaunay triangle and is located at its
circumcentre. When the Delaunay triangulation is
complete, this means that no data point may lie inside the
circumcircle of any triangle.

Generally speaking, the Delaunay triangulation
associated with an arbitrary set of points in the plane is
unique7 'a In some instances, however, the triangulation
may not be unique and is said to be degenerate. A very
simple example which illustrates a degenerate triangulation
is shown in Fig. 2, where four data points are located at
the vertices of a square. The single vertex of the Dirichlet
tessellation is located at the centroid of the square where
four polygons meet. Two different Delaunay triangulations
are possible with this configuration and both are equally
valid. In practical algorithms, the problem of degeneracy is
easily dealt with by making an arbitrary choice between
alternative triangulations and does not pose any serious
difficulties.

Figure 1. The Diriehlet tessellation and del-triangulation

0141-1195/87/010034-22 $2.00
34 Adv. Eng. Software, 1987, Vol. 9, No. 1 © 1987 Computational Mechanics Publications

/
/

Figure 2. Degenerate Delaunay triangulations

One of the advantages of Delaunay triangulations, as
opposed to triangulations constructed heuristically, is that
they automatically avoid forming triangles with small
included angles whenever this is possible. Indeed Lawson 2
and Sibson 3 have shown that Delaunay triangulations are,
by definition, locally equiangular. This means that for
every convex quadrilateral formed by two adjacent
triangles, the minimum of the six angles in the two
triangles is greater than it would have been if the
alternative diagonal had been drawn and the other pair
of triangles chosen. Because of this property, Delaunay
triangulations are particularly suited to grid generation
for finite element analysis and contouring algorithms.

A number of algorithms for construct'mg planar
Delaunay triangulations have been proposed. 1'2'4-7 For a
collection of N points, the average and worst case run
times for the various algorithms are shown in Table 1.
In engineering applications the average performance of a
triangulation algorithm is generally more important than
its worst case performance, since the latter tends to occur
rarely in practice. 4 Average run times for triangulation
algorithms are usually deduced by considering collections
of points located randomly within square or circular
domains.

For large sets of points, the results in Table 1 indicate
that the first algorithm of Lee and Schachter 4 (these
authors propose two algorithms) is the most efficient.
This procedure, however, is complicated and difficult to

implement. FORTRAN code for the Cline and Renka 7
algorithm has been made publicly available by Renka s
and a simple FORTRAN 77 implementation of the
Watson 6 scheme is described in Sloan and Houlsby. 9
Watson's algorithm, which is quite efficient for triangulating
up to about 2000 points, has the advantage of being
particularly simple. This paper describes a simple scheme
which may be used to compute Delaunay triangulations
for both small and large sets of points. Analysis of the
algorithm indicates that its run time is 0(N s/4) for points
that are distributed randomly within a square domain.
Empirical comparisons with other procedures suggest that
it is efficient.

OUTLINE OF ALGORITHM

The algorithm combines features of both the Watson 6 and
Lawson 2 procedures. The Delaunay triangulation is
assembled by introducing each point, one at a time, into
an existing Delaunay triangulation which is then updated.

Following the idea of Watson, the process is started by
selecting three points to form a 'supertriangle' which
completely encompasses of all of the data points to be
triangulated. Initially the Delaunay triangulation is thus
comprised of a single triangle defined by the supertriangle
vertices. When a new point P is introduced into the triangu-
lation, we first find an existing triangle which encloses P
and form three new triangles by connecting P to each of
its vertices. Note that during this step the original enclosing
triangle is deleted and the net gain in the total number of
triangles is two. After the new point P has been inserted,
the existing triangulation is updated to a Delaunay triangu-
lation using the swapping algorithm of Lawson. 2 In this
procedure all the triangles which are adjacent to the edges
opposite P are placed on a last-in, first-out stack (ie. a
maximum of three triangles are placed on the stack initially).
Each triangle is then unstacked, one at a time, and a check
is made to determine if P lies inside its circumcircle. If this
is the case then the triangle containing P as a vertex and
the adjacent triangle form a convex quadrilateral with the
diagonal drawn in the wrong direction, and it must be
replaced by the alternative diagonal to preserve the
structure of the Delaunay triangulation. The swapping
procedure replaces two old triangles with two new
triangles with no net gain in the total number of triangles.
Once the swap is completed, any triangles which are now
opposite P are added to the stack (there are a maximum of
two). The next triangle is then unstacked and the whole
process is repeated until the stack is empty and this results
in a new Delaunay triangulation containing the point P.
An illustration of the swapping procedure is shown in
Fig. 3. Note that if P lies outside (or on) the circumcircle
for a stacked triangle, then no action is taken and we

Table l. Average and worst case running times for various
Delaunay triangulation algorithms

Algorithm Average ease Worst ease

Green and Sl'bson 0(N,/2) 0(N 2)
Lawson 0(N4t 3) 0(N 2)
Lee and Schachter (1) 0(N log2N) 0(N log2N)
Lee and Schachter (2) 0(N3t 2) 0(N 2)
Bowycr 0(N3/2) 0(N 2)
Watson 0(N3/2) 0(N 2)
Cline and Renka 0(N 4~3) 0(N 2)

A dr. Eng. Software, 198 7, Vol. 9, No. 1 35

t ~> p.,r '~ } " / irian t \y,
, ~ adjacent triangte

Z'circurncircle for
adjacent triangle

Figure 3. Lawson's swapping algorithm

simply skip to the next triangle on the stack. It has been
shown by Lawson 2 that this iterative algorithm must result
in a Delaunay triangulation and will always terminate after
a finite number of swaps. Typically only a few levels of
swaps are necessary for each edge which is initially opposite
P and the process is thus efficient.

After all the points have been added to the triangulation,
the final Delaunay triangulation is obtained by removing all
of the triangles that contain one or more of the super-
triangle vertices. Any vertex which appears in these deleted
triangles, but is not a supertriangle vertex, must lie on the
boundary of the triangulation. Since the insertion of each
new point into the triangulation creates two new triangles
the f'mal number of triangles, including those formed with
the vertices of the supertriangle, is 2N+ 1.

IMPLEMENTATION OF ALGORITHM

An implementation of the algorithm for computing
Delaunay triangulations is given in Appendix 1. To the best
of the author's knowledge the code strictly obeys the
syntax of FORTRAN 77 and thus should be portable. The
program uses single precision arithmetic which is considered
to be satisfactory for computation on 32 bit machines. To
convert the implementation to double arithmetic, all REAL
declarations should be replaced by DOUBLE PRECISION
declarations and all real constants in PARAMETER state-
ments should be replaced by double precision constants.
The program is comprised of five subroutines (DELTRI,
BSORT, QSORTI, DELAUN, PUSH) and four short
function subprograms (TRILOC, POP, EDG, SWAP). Each
of these will be discussed in turn to illustrate the detail of
the overall algorithm.

Subroutine DEL TRI
This is the only subroutine that needs to be called by the

user to construct the Delaunay triangulation and controls
the overall flow of the program. When calling DELTRI,
NUMPTS is the total number of points in the data set and
N is the number of points to be triangulated. The set of
points to be triangulated is stored in the integer vector
LIST prior to calling the subroutine. LIST is of length N
where N~< NUMPTS. This allows the user to triangulate
any subset of the total number of points and is particularly
useful in practical applications. The co-ordinates of the
points in the data set are stored in the real vectors X and
Y. Each of these is of length NUMPTS + 3. The integer
vector BIN is of length NUMPTS, and is required as
auxiliary storage in subroutines BSORT and DELAUN.
Throughout the program the structure of the Delaunay
triangulation is stored in the integer arrays V and E. Both

of these arrays are two-dimensional, with V containing the
vertices for each triangle and E containing the adjacent
triangles. The conventions for this data structure are shown
for a simple example in Fig. 4. The dimensions of these
arrays are 1I(3, 2 * N + 1) and E(3, 2 * N + 1).

At the beginning of subroutine DELTRI, the co-
ordinates of the points to be triangulated are normalised to
the values (3¢, ~) according to

:~p = (Xp - - XMIN)/DMAX

.~p = (vp -- YMIN)/DMAX

where

DMAX = MAX(XMAX - XMIN, YMAX -- YMIN)

and

XMIN = MIN {Xp}
XMAX = MAX {Xp}

P e LIST
YMIN = MIN {yp}

YMAX = MAX {yp}
This ensures that the values of ~ and)? lie between 0 and 1
and proves convenient in the triangulation process.

After the triangulation has been computed, by calling
the subroutines BSORT and DELAUN, subroutine DELTRI
resets the co-ordinates of the points to their original values.
Upon exiting from DELTRI, the Delaunay triangles are
numbered from 1 to NUMTRI. Their vertex and adjacent
triangle lists are stored in V(I, J) and E(I, J) where I = 1,
3 and J = 1, NUMTRI.

Subroutine BSOR T
As described previously, the Delaunay triangulation is

constructed by inserting each point, one at a time, into an
existing triangulation. Before updating the triangulation,
we first need to find an existing triangle which encloses the
point to be inserted. The searching procedure used in the
current algorithm is due to Lawson 2 and is implemented in
the function subprogram TRILOC (to be described later).
This process is initiated at the triangle most recently

®

tr iangle 1 2 3

i 2 3

vertices 4 4 i

2 3 2

tr iangle i 2 3

0 I 0
adjacent 2 0 1
tr iangles

3 3 2

V E

(1) vertices l is ted anticlockwise (1) adjacent triangles l is ted
anticlockwise (2) f i r s t vertex at point of

contact of f i r s t and third (2) zero denotes no adjacent
adjacent triangles tr iangle

Figure 4. Data structure for triangulation algorithm

36 Adv. Eng. Software, 1987, Vol. 9, No. 1

2

0

0 1 2

7
I

I

6' I

8

5

I P . ~ - -

2

9

4
I
I
I
I

I

3

Figure 5. Bin sorting procedure for points in the plane

created and marches from one triangle to the next in the
direction of the point to be inserted. The searching
algorithm may be made efficient by presorting the points
so that the distance between each point and its predecessor
is small, thus reducing the number of triangles that need to
be checked.

Following Lee and Schachter, 4 we ensure that con-
secutive points are in close proximity by using a bin sort. In
this procedure, which is implemented by subroutine
BSORT, the region to be triangulated is covered by a grid
of rectangles called bins. Each point is placed in a bin
according to its co-ordinates and these bins are accessed as
shown in Fig. 5. Assuming that the points are distributed
uniformly in the x-y plane, we expect the number of points
in each bin to be approximately equal. Empiricial testing
has indicated that it is sufficient to partition the domain to
be triangulated into approximately N 1/2 bins. Thus the
number of bins in the x- and y-directions, NDIV, is chosen
as N 1/4 (to the nearest integer). Since the normalised
co-ordinates for the points lie in the range from 0 to 1, the
x- and y-dimensions of each bin are given by 3¢max/NDIV
and ~rmx/NDIV. (In practice, these are multiplied by a
number slightly greater than one to ensure that points with
the maximum x- or y-co-ordinates fall within a bin.) To
fred the bin to which each point belongs, we first compute
the row and column indices (1, J) according to

I = INT@ *NDIV*0.99/~rmx)

J = INT(~¢ * NDIV* 0.99/~max)

where (3c,33) are the normalised co-ordinates. The bin
number for the point is then given by

B I N = I * N D I V + J + 1 (Ieven)

B I N = (/ + 1) * N D I V - - J (/odd)

After each point has been assigned a bin number, subroutine
BSORT calls a quicksort routine to sort the points in
ascending sequence of bin number. This completes the
purpose of subroutine BSORT, since the points in LIST are
now ordered so that consecutive points are in close
proximity to one another. In passing, we note that the bin

sort procedure may be omitted from the overall algorithm
if desired. This will not affect the function of the program,
but will decrease its efficiency for cases where the points
are distributed uniformly in the x-y plane. This aspect will
be examined further in a later section of the paper.

Subroutine QSOR T1
This subroutine sorts the list of points in ascending

sequence of their bin numbers and is called from subroutine
BSORT. It uses the quicksort algorithm and is discussed
fully in a paper by Houlsby and Sloan. 1°

Subroutine DELA UN
This routine is the heart of the triangulation algorithm.

To begin the process, we define the vertices and co-
ordinates for the supertriangle. The vertices of the super-
triangle are allocated the numbers NUMPTS + 1,
NUMPTS + 2 and NUMPTS + 3, and the corresponding
co-ordinates are set to (--100,--100), (100,--100) and
(0,100). The supertriangle is initially stored in the first
column of the vertex and adjacency arrays, and its vertex
co-ordinates are stored in the last three locations of the
X and Y vectors. Since the x- andy-co-ordinates have been
normalised to lie within the range 0 to 1, all of the points to
be triangulated are automatically enclosed by the super-
triangle. The size and shape of the supertriangle may be
chosen arbitrarily. It is sufficient merely that it contains
all of the points to be triangulated. It is worth noting,
however, that if the corners of the supertriangle are very
close to the window enclosing the points, the boundary of
the final triangulation may be locally concave. Strictly
speaking, such a triangulation does not correspond exactly
to a Delaunay triangulation, since some long thin triangles
along the boundary have been omitted. In most practical
applications this is not a disadvantage, but may be avoided
by locating the vertices of the supertriangle further away
from the enclosing window.

After the supertriangle has been defined, subroutine
DELAUN inserts each of the points into the triangulation
one at a time. To introduce a new point P, a search is made
to find an existing triangle T which encloses P. Triangle T
is then deleted and three new triangles are created by
connecting P to each of its vertices (Fig. 6). Note that each
of these triangles is created such that P is the first vertex
in the vertex array. The net gain in the total number of
triangles is two, and the additional triangles are numbered
NUMTRI + 1 and NUMTRI + 2 where NUMTRI is the
total number of triangles prior to the insertion of P. Next,
each triangle containing P as a vertex is placed on a last-in,
first-out stack (provided that the edge opposite P is adjacent
to some other triangle). With reference to Fig. 6, the
triangles T, NUMTRI + 1 and NUMTRI + 2 are placed on
the stack and the triangles opposite P are respectively A,
B and C. Note that it is unnecessary to maintain a separate
stack of adjacent triangles which are opposite to P, since
these can be extracted from the adjacency arrays for the
stacked triangles. For example, with reference to Fig. 6,
the adjacent triangle which is opposite to P in triangle T
is given by A = E(2, T). In general for element I in the
stack, the opposite adjacent triangle is given by E(2,I) .
This completes the initial insertion phase in subroutine
DELAUN, and we are now ready to update the triangu-
lation to a Delaunay triangulation using the swapping
algorithm of Lawson. 2

Adv. Eng. Software, 1987, Vol. 9, No. 1 37

V2 = V(2,T)

\\ E (~ I , / I

i--. T) /

\\ !
!

/
/

/
/

/
V 3 = V(3,T} \ /- V l : V(I ,T)

,,, = E(3,T) /
N /

\ /
\ /

\ /
N / \ /

INSERT P

V2

,, A \ ,
\ \ //NUMTFII÷I \ p \ I I

Figure 6.

\ A- V3 ,,, / Vl
N /

\ & / /
N /

N /
\ /

\ /
\ /

\ /

Initial insertion o f new point into triangulation

In Lawson's procedure, we remove each triangle from
the stack one at a time. The notation used in subroutine
DELAUN is shown in Fig. 7. Triangle L is the triangle
removed from the stack. Triangle R is the triangle opposite
point P which is adjacent to L. Triangles L and R share the
edge V 1 - V2 and form a quadrilateral with vertices
P - - V 2 - 1 , '3 - V1 (triangle L is to the left of V 2 - V1
and triangle R is to the right of V2 -- V1). If the point P is
inside the circumcircle of triangle R, then the diagonal
V1 -- V2 needs to be replaced with the diagonal P - - V3
to preserve the structure of the Delaunay triangulation. As
pointed out by Lawson, 2 this circumcircle check maximises
the minimum angle occurring in any pair of adjacent
triangles forming a convex quadrilateral. If a swap is
necessary, as shown in Fig. 7, the vertex and adjacent arrays
for triangles L and R are updated (again with P as the first
vertex in the vertex arrays), as are the adjacency arrays for
triangles A andC. Provided that there is a triangle opposite
P which is adjacent to L, triangle L is placed on the stack.
Similarly for triangle R. The next triangle is then removed
from the stack and the whole process is repeated until the
stack is empty. This signifies that the insertion of P is
complete and the new triangulation is a Delaunay
triangulation.

In subroutine DELAUN, the stacked triangles are stored
in the vector STACK which has a length of NUMPTS. This
dimension was found to be sufficient for triangulating
10 000 points distributed randomly within a square domain,
but may be increased if the need arises.

After all of the points have been triangulated, subroutine
DELAUN deletes any triangle which contains one or more
supertriangle vertices. During this phase the vertex and
adjacency arrays are updated to fill any blanks created and
the Delaunay triangles are numbered from 1 to NUMTRI.
The vertex and adjacent triangle lists are stored in II(1, J)
and E(1,J) respectively, where 1 = 1, 3 and J = 1,
NUMTRI.

Subroutine PUSH

This subroutine places an item on a last-in, first out
stack and is easily understood. The maximum permissible
size of the stack is MAXSTK, and this is defined in sub-
routine DELAUN. Subroutine PUSH includes a check to
determine if there is sufficient space in STACK to complete
the triangulation. I f this is not the case, then a diagnostic
message is printed and the execution of the program is
halted.

,r,ono,o j us,
removod from

stack / / /

for triangle R ~ ~ V2

adjacent triangle
opposite P

8
SWAP

Figure 7.

V1
/

/

P

\
\

V2

Implementation of Lawson's swapping algorithm

38 Adv. Eng. Software, 1987, Vol. 9, No. 1

Function POP
This function removes an item from the top of a last4n,

first-out stack and is complementary to subroutine PUSH.
It includes a check to determine if the stack is already
empty before attempting to remove an item. If this is so, a
diagnostic message is printed and the execution of the
program is halted.

Function EDG
This function finds the number of the edge (i.e. the row

number in the triangle adjacency array) in element I which
is adjacent to element J. Calls to this function should
always results in a positive match. If elements I and J are
found to be non-adjacent, function EDG prints a diagnostic
message and terminates the execution of the program.

Function TRILOC
This function accepts the x-y co-ordinates of a point

and f'mds an existing triangle which encloses it. The search
is started at the triangle which has been most recently
created, and checks if the point is to the right of any of
its edges. Since the triangle vertices are always listed in an
anticlockwise sequence, a point can only be enclosed by a
triangle if it is to the left of each of its edges. (A point
which lies on one of the edges of a triangle is also said to be
enclosed by the triangle.) If the point lies to the right of
any edge of the triangle, then the search shifts to the
triangle which is adjacent to this edge and the process is
repeated. In this way, the search marches from one triangle
to the next in the general direction of the point as shown in
Fig. 8. This ingenious searching algorithm is due to
Lawson 2 and avoids the need to search all of the triangles
in the grid.

Function SWAP
This function checks to determine if a pair of adjacent

triangles form a convex quadrilateral with the maximum
minimum angle. The adjacent triangles share an edge
V1-- V2 and form a quadrilateral with vertices
P - - V 2 - - V 3 - - V 1 as shown in Fig. 9. The diagonal
V1 -- V2 is replaced with the diagonal P - - V3 if P lies
inside the circumcircle for the triangle V 1 - V2--V3.
With reference to Fig. 9, we see that P lies inside the
circumcircle if 2zrr -- 2ra < 2r/3, i.e. it" at +/3 > lr. Similarly,
P lies outside the circumcircle if a +/3 < ft. The neutral case

/

Figure&

~ - search started at
last formed triangle

Triangle searching algorithm.

triangte enclosing
point

1
2r

1

Figure 9. Geometry for circumcircle test

occurs when P lies on the circumcircle and rr = a +/3.
Since a +/3 < 2zr, a swap needs to be performed if

sin (a +/3) < 0

Using the formula

sin (a +/3) = cos (a) sin (fl) + sin (a) cos 03)

this condition is equivalent to

x~3 x2a + YtaY23

[(x 2 3 + 2 2 : 1~ Yla){x2a +Y2a}]

x ~ yu, --xtp y~,
×

[{x~ + y ~ } (x ~ + y~}] 1/2

X13 Y23 - - x23Y 13 +
[(x ~ 3 + 2 2 2 v~ Yla] ' (X23 + Y23}]

x2pxtp + y ~ y~p

[(x~ + y b } (x ~ + y ~ }] 1'~<
0 X

where

X13 -- X 1 - - X3

X23 = X 2 - - X3

X l p = X 1 - - X P

X2p = X 2 - - X p

Yla =Yl--Ya

Y23 =Y2--Ya

Yte =Yl --YP

Y2P = Y 2 - - Y P

Thus, P lies inside the ckcumcircle if

(Xla x23 + YlaY23) (X~ Yl/" -- Xtp y ~)

< (Yx3 X2a--xlaY2a)(xzp xlv + YlPY2P)

;his check, which is due to Cline and Renka, 7 is particularly
efficient since it requires only ten multiplications, two
additions and two subtractions. As pointed out by these
authors, however, round off error may cause an incorrect
decision to be made when sin (a +/3) approaches zero. This
condition arises when:

(1) a +/3 is near ft.

Adv. Eng. Software, 1987, Vol. 9, No. 1 39

(2) a and/3 are both near 0.
(3) a and/3 are both near lr.

The first case occurs when P is very close to the circum-
circle of an adjacent triangle, whilst the second and third
cases occur when the four vertices of the adjacent triangles
are nearly coUinear. A complete discussion of this problem
has been given by Cline and Renka. 7 They established that
the first condition has no ill-effects on the construction of
a triangulation, except that the outcome of a swap test is
not predictable. Allowing for the precision of floating
point arithmetic, the triangulation produced will still be a
Delaunay triangulation. The second and third cases,
however, need to be accounted for as they may result in an
incorrect triangulation. If a and/3 are both in the vicinity of
lr, a swap should be performed. The Cline and Renka 7 test,
which is implemented in the logical function SWAP, is as
follows:

STEP 1: Set COSA = xlax2a -t-y13yz3

COSB = xzv xtp + Yzv Y w

STEP 2: If COSA >/0 and COSB ~> 0 then

Set SWAP to FALSE and EXIT

STEP 3: If COSA < 0 and COSB < 0 then

Set SWAP to TRUE and EXIT

STEP 4: Set SINA = xlaY2a - - X23 .)' 13

SINB - x ~ y u~ -- x ~ Y2e

and

SINAB = SINA* COSB + SINB* COSA

STEP 4: If SINAB < 0 then set SWAP to TRUE
and EXIT. Else, set
SWAP to FALSE and EXIT.

Although this algorithm requires a number of additional
comparisons, it has been found to be relatively efficient as
well as being numerically stable.

+ 0(N) operations are required. Thus the average run time
of the algorithm without the bin sort is O(Na/2).

The worst ease run time for the algorithm is 0(N")and
occurs, for example, when the set of data points lie on a
parabola. This example is discussed in detail by Lee and
Schachter, 4 and is the worst case for a variety of Delaunay
triangulation schemes.

Excluding the memory required to store the co-ordinates
of the points and supertriangle vertices, subroutine DELTRI
requires a total of 14N+ 6 integer words of memory to
compute and store the Delaunay triangulation. In addition
to this requkement, subroutine QSORTI needs 64 words of
locally-declared integer memory for the operation of two
stacks (this is sufficient to sort a list of 232 points).

APPLICATIONS

To assess the validity and efficiency of the proposed
algorithm, it was applied to sets of points distributed
randomly within a unit square. Figure 10 illustrates the
Delaunay triangulation for ten such points. The perform-
ance of the scheme was measured by constructing Delaunay
triangulations for sets of 100, 500, 1000, 3000, 4000, 5000
and 10000 points. The CPU times for the proposed
algorithm are shown in Table 2, together with the CPU
times for the implementations given by Sloan and Houlsby 9
and Renka. 8 These statistics are for the VAX 11/780 with
full optimisation on the FORTRAN 77 compiler, and were
measured using the internal clock. Two versions of the
proposed algorithm were run; one with bin sorting and one
without bin sorting. To assess the validity of the triangula-
tion produced, a number of checks were conducted (the
CPU times for these checks are not included in the timing
statistics). Firstly, each triangle was tested to ensure that
no data point lay within its circumcircle (allowing for the
precision of the machine). Secondly, the area of each

ANALYSIS OF ALGORITHM

In the bin sorting phase, the largest amount of work occurs
in the quicksort procedure which requires an average of
0(N logzN) operations. The actual triangulation algorithm
is comprised of two distinct steps; the searching step and
the swapping step. If the distribution of the points through-
out the x-y plane is reasonably uniform, there will be
roughly 0(N 1/2) points in each bin. If the bins are approxi-
mately square, 0(N 1/4) triangles will be searched to find the
triangle enclosing each newly introduced point. The
swapping algorithm requires roughly a constant number of
operations for each point. (Empirical tests, for points
distributed randomly within a square domain, indicate that
an average of three swaps per point are necessary.) Once
the triangulation has been completed, 0(N) operations are
required to delete all of the triangles that contain one or
more of the supertriangle vertices. Thus, overall, the
algorithm requires an average of 0(Nlog2N)+ O(N s/4) +
0(N) + 0(N) operations. For large N, the average run time
of the scheme is 0(NS/4).

As noted in a previous section, the bin sorting phase may
be omitted from the algorithm if desired. The searching
step will then examine roughly 0(N 1/2) triangles as each
point is inserted and, overall, an average of 0(N 3/2) + 0(N) Figure 10.

\

Delaunay triangulation for ten such points

40 Adv. Eng. Software, 1987, Vol. 9, No. 1

Table 2. Timing statistics for triangulation algorithms (points distributed randomly over a unit square)

Watson
Proposed algorithm Cline and

Proposed algorithm (Sloan and Renka algorithm
N algorithm (no bin sort) Houlsby 9) (Renka s) T2/T1 T3/T1 T4/Tt

T 1 a T 2 a 7 3 a 7"4 a

100 0.36 0.36 0.41 0.37 1.00 1.14 1.03
1.07 1.16 1.17 1.28

500 2.06 2.32 2.68 2.92 1.13 1.30 1.42
1.01 1.21 !.31 1.26

1000 4.15 5.35 6.66 7.01 1.29 1.60 1.69
1.06 1.23] .45 1.29

2000 8.67 12.59 18.18 17.10 1.45 2.10 1.97
1.10 1.32 1.52 1.24

3000 13.55 21.53 33.67 28.87 1.59 2.48 2.13
1.08 1.34 1.48 1.23

4000 18.50 31.67 51.40 41.18 1.71 2.78 2.23
1.03 1.29 1.57 1.35

5000 23.30 42.19 73.01 55.65 1.81 3.13 2.39
1.06 1.36 1.48 1.30

10000 48.71 108.48 203.29 !37.45 2.23 4.17 2.82

Notes:

1. All times in seconds for VAX 11/780.
2. 'a' values obtained by assuming times are 0(Na).
3. Sloan and Houlsby 9 implementation converted to single precision arithmetic.
4. Renka g implementation run with points presorted in ascending sequence of their x-co-ordinates.

triangle was computed and a check made to ensure that it
was positive. Finally, the adjacency arrays were used to
check that the triangulation obeyed Euler's formula for
planar graphs, i.e. N - - N e + N t = 1 where Ne is the
number of edges and Nt is the number of triangles.

The results shown in Table 2 indicate that the perform-
ance of the proposed algorithm compares favourably with
that of the Watson 6'9 and Cline and Renka ~'a algorithms.
In all cases the CPU time required by the proposed scheme
is less than that of the other schemes. The savings are most
pronounced in comparison with the Watson algorithm
which, for N values greater than about 2000, rapidly
becomes uncompetitive. The Cline and Renka scheme,
whilst more efficient than the Watson scheme, also requires
more than twice the amount of CPU time for N greater
than about 2000. The advantage of the Watson and Cline
and Renka procedures is that they require less storage than
the proposed algorithm (slightly greater than 9N and 7N
words of integer memory respectively). The proposed
scheme uses more memory because of the need to store the
element adjacency arrays. In many applications, however,
such as the construction of contour plots, this information
is useful and often needs to be generated in any case. The
1 4 N + 6 words of memory required by the proposed
algorithm is not considered to be excessive, particularly
for modern machines with virtual memory, and appears to
be justified by the increase in efficiency.

When the proposed algorithm is run without the bin
sort, it is still relatively efficient. For large sets of points,
however, the bin sort procedure reduces the total CPU time
requirement significantly. Thus, provided the points are
distributed throughout the x-y plane in a reasonably
uniform manner, it would appear advisable to include this
option.

The observed average case run times for the Watson and
Cline and Renka schemes are in reasonable agreement with
the theoretical predictions. As shown in Table 1, the

average run times for these two algorithms are expected to
be 0(N a/2) and 0(N 4/3) respectively. Averaging the results
for all values of N considered, the observed run times are
approximately 0(N L42) and 0(NL2a). The observed run
times for the proposed algorithm, however, grow at a rate
which is substantially less than the theoretical prediction of
O(NS/4). For values of N between 100 and 10 000, the
observed run time of the proposed scheme is approximately
O(N~'°8). Empirical tests indicate that the theoretical
operation counts are correct. The apparent discrepancy is
due to the fact that the time required for one iteration of
the search procedure is substantially less than the time
required for one iteration of the swapping procedure. For
the values o (N considered, the average number of searches
conducted is small and most of the time is spent in the
swapping phase. Thus, overall, the average run time of the
algorithm is slightly greater than 0(N) unless N is very
large. Similar arguments hold when the proposed algorithm
is used without the bin sort, except that the discrepancy
between the predicted and observed run times is less due
to the increased number of searches conducted. :

CONCLUSIONS

An algorithm has been described for computing Detaunay
triangulations in the plane. A FORTRAN 77 implementa-
tion of the scheme is given. Empricial tests indicate that
the procedure is efficient and may be used for both small
and large sets of points.

REFERENCES

1 Green, P. J. and S~son, R. Computing Dirichlet tessellations in
the plane, The Computer Journal, (1978) 21,168

2 Lawson, C. L. Software for C t interpolation, in Rice, J. (ed.)
Mathematical Software III, Academic Press, New York, (1977)
pp. 161-194.

Adv. Eng. Software, 1987, Vol. 9, No. 1 41

3 Sibson, R. Locally equiangular triangulations, The Computer
Journal, (1978) 21, 243

4 Lee, D. T. and Schaehter, B. J. Two algorithms foz construct-
ing a Dehunay triangulation, International Journal o f Com-
puter and Information Sciences, (1980) 9,219

5 Bowyer, A. Computing Diriehlet tesselhtions, The Computer
Journal, (1981) 24, 162

6 Watson, D. F. Computing the n-dimensional Delaunay triangula-
tion with application to Voronoi polytopes, The Computer
Journal, (1981) 24, 167

7 Cline, A. K. and Renka, R. L. A storage efficient method for
construction of a Thiessen triangulation, Rocky Mountain

Journal of Mathematics, (1984) 14, 119
8 Renka, R. L. Algorithm 624: Triangulation and interpolation

at arbitrarily distributed points in the plane, ACM Tranaaetions
on Mathematical Software, (1984) 10, 440

9 Sloan, S. W. and Houlsby, G. T. An impl~mantation of
Watson's algorithm for computing two-dimensional Delaunay
triangulations, Advances in Engineering Software, (1984) 6,
192

10 Houlsby, G. T. and Sloan, S. W. Eff~e~nt sorting routines in
FORTRAN 77, Advances in Engineering Software, (1984) 6,
198

C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C

C

C
C
C
C

C
C
C
C

C

C
C
C

C
C
C
C
C

C
C
C
C

C

C
C
C
C
C

APPENDIX ONE: De]aunay Triangulation Program

C
C

SUBROUTINE DELTRI(NUMPTS,N,X,Y,LIST,BIN,V,E,NUMTRI)
COljj,lmoii~,lj,,lJelIQIim,RoowIwIillm~IImlli~llm~wJwIJJi~mlIwR~NmI11
C
C SUBROUTINE DELTRI

PURPOSE:

ASSEMBLE DELAUNAY TRIANGULATION FOR COLLECTION OF POINTS IN THE

PLANE

INPUT:

' NUMPTS '

I N ,

'X'

,y,

'LIST' -

'BIN'

I V ,

'E'

'NUMTRI' -

OUTPUT:

TOTAL NUMBER OF POINTS IN DATA SET

- TOTAL NUMBER OF POINTS TO BE TRIANGULATED

- N LE NUMPTS

- X-COORDS OF ALL POINTS IN DATA SET
- X-COORD OF POINT I GIVEN BY X(I)

- LIST OF LENGTH NUMPTS+3
- LAST THREE LOCATIONS ARE USED TO STORE X-COORDS OF

SUPEHTHIANGLE VERTICES IN SUBROUTINE DELAUN

- Y-COORDS OF ALL POINTS IN DATA SET
- Y-COORD OF POINT I GIVEN BY Y(I)
- LIST OF LENGTH NUMPTS+3
- LAST THREE LOCATIONS ARE USED TO STORE Y-COORDS OF

SUPERTRIANGLE VERTICES IN SUBROUTINE DELAUN

LIST OF POINTS TO BE TRIANGULATED
LIST OF LENGTH N
IF N EQ NUMPTS, SET LIST(I)=I FOR I=I,2,...,NUMPTS

PRIOR TO CALLING THIS ROUTINE

NOT DEFINED
LIST OF LENGTH NUMPTS
USED AS WORKSPACE IN SUBROUTINES BSORT AND DELAUN

NOT DEFINED
V HAS DIMENSIONS V(3,2*N+~), WHERE N IS THE NUMBER OF
POINTS TO BE TRIANGULATED

NOT DEFINED

E HAS DIMENSIONS E(3,2*N+1), WHERE N IS THE NUMBER OF

POINTS TO BE TRIANGULATED

NOT DEFINED

'NUMPTS' - UNCHANGED

'N' - UNCHANGED

'X' - UNCHANGED, EXCEPT THAT LAST THREE LOCATIONS CONTAIN

NORMALISED X-COORDS OF SUPERTRIANGLE VERTICES

'Y' - UNCHANGED, EXCEPT THAT LAST THREE LOCATIONS CONTAIN
NORMALISED Y-COORDS OF SUPERTRIANGLE VERTICES

'LIST' - UNCHANGED

42 Adv. Eng. Software, 1987, Vol. 9, No. 1

'BIN' - NOT DEFINED

'V' - VERTEX ARRAY FOR TRIANGULATION
- VERTICES LISTED IN ANTICLOCKWISE SEQUENCE
- VERTICES FOR TRIANGLE J ARE FOUND IN Y(I,J) FOR I=Ip2,3

AND J=I~2,...,NUMTRI
- FIRST VERTEX IS AT POINT OF CONTACT OF FIRST AND THIRD

ADJACENT TRIANGLES

IE' - ADJACENCY ARRAY FOR TRIANGULATION
- TRIANGLES ADJACENT TO J ARE FOUND IN E(I,J) FOR I=I,2,3

AND J=I,2,...,NUMTRI
- ADJACENT TRIANGLES LISTED IN ANTICLOCKWISE SEQUENCE
- ZERO DENOTES NO ADJACENT TRIANGLE

'NUMTRI' - TOTAL Nq~4BER OF TRIANGLES IN FINAL TRIANGULATION

- BqJMTRI LT 2eN÷1

SUBROUTINES CALLED:

BSORT,DELAUN

PROGRAMMER:

S W SLOAN

LAST MODIFIED:

30 JAN 1986 S W SLOAN

cJJ
C

INTEGER N,I,LIST(m),V(3,1),E(3,1),NUMTRI,BIN(1),P,NUMPTS

REAL XMIN,XMAX,YMIN,YMAX,DMAX,COOOOI,FACT,X(m),Y(")

PARAMETEA(COOO01=I.O)

COMPUTE MIN AND MAX COORDS FOR X AND Y
COMPUTE MAX OVERALL DIMENSION

XMIN=X(LIST(1))
XMAX=XMIN
YMIN=Y(LIST(1))
YMAX=YMIN
DO 5 I=2,N

P=LIST(I)
XMIN=MIN(XMIN,X(P))
XMAX=MAX(XMAX,X(P))
YMIN=MIN(YMIN,Y(P))
YMAX=MAX(YMAX,Y(P))

5 CONTINUE
DMAX=MAX(XMAX-XMIN,YMAX-YMIN)

10

NORMALISE X-Y COORDS OF POINTS

FACT=COOOOI/DMAX
DO 10 I:I,N

P=LIST(I)
X(P):(X(P)-XMIN)'FACT
y(P):(Y(P)-YMIN)'FACT

CONTINUE

SORT POINTS INTO BINS
THIS CALL IS OPTIONAL

CALL BSORT(N,X,Y,XMIN,XMAX,YMIN,YMAX,DMAX,BIN,LIST)

COMPUTE DELAUNAY TRIANGULATION

CALL DELAUN(NUMPTS,N,X,Y,LIST,BIN,V,E,NUMTAI)

RESET X-Y COORD3 TO ORIGINAL VALUES

3o

DO 30 I=I,N
P=LIST(I)
X(P)=X(P)mDMAX*XMIN
¥(P)=Y(P)mDMAX+YMIN

CONTINUE

END

Adv. Eng. Software, 1987, Vol. 9, No. 1 43

C

C
C

C

C
C

C

C
C

C

C
C

C

C
C

C

C
C

C
C

C

C
C
C

C

C
C

C

C

C

C
C
C
C

C

C

C
C
C

C
C
C

C

C
C
C

C
C
C

C

C

C

C
C

C

C
C

C

C
C

C
C

C
C

C
C
C
C
C
C

C

C

C
C
C

C

C
C

C

C

C
C

SUBROUTINE BSORT(N,X,Y,XMIN,XMAX,YMIN,YMAX,DMAX,BIN,LIST)

C
Cm,,,~J,m,~JlJ,Dti.Hum~wewmH1~HHntmmmt1~mwlllm.ewummJ.wwn~itullm~

SUBROUTINE BSORT

PURPOSE:

SORT POINTS SUCH CONSECUTIVE POINTS ARE CLOSE TO ONE ANOTHER IN THE

X-Y PLANE USING A BIN SORT

INPUT:

'N'

'X'

,y,

'XMIN '

'XMAX '

'YMIN '

'][MAX '

'DMAX'

' BIN '

'LIST'

OUTPUT:

tNt

tXt

tyt

'XMIN '

'XMAX '

' YMIN '

' YMAX '

'UMAX'

'BIN'

'LIST'

- TOTAL NUMBER OF POINTS TO BE TRIANGULATED

- N LE NUMPTS, WHERE NUMPTS IS TOTAL NUMBER OF POINTS IN
DATA SET

- X-COORDS OF ALL POINTS IN DATA SET
- IF POINT IS IN LIST,THE COORDINATE MUST BE NORMALISED

ACCORDING TO X=(X-XMIN)/DMAX
- X-COORD OF POINT I GIVEN BY X(I)
- LIST OF LENGTH NUMPTS+3

- LAST THREE LOCATIONS ARE USED TO STORE X-COORDS OF
SUPERTRIANGLE VERTICES IN SUBROUTINE DELAUN

- Y-COORDS OF ALL POINTS IN DATA SET

- IF POINT IS IN LIST,THE COORDINATE MUST BE NORMALISED
ACCORDING TO Y=(Y-YMIN)/DMAX

- Y-COORD OF POINT I GIVEN BY Y(1)

- LIST OF LENGTH NUMPTS÷3
- LAST THREE LOCATIONS ARE USED TO STORE Y-COORDS OF

SUPERTRIANGLE VERTICES I N SUBROUTINE DELAUN

- MIN X-COORD OF POINTS IN LIST

- MAX X-COORD OF POINTS IN LIST

- MIN Y-COORD OF POINTS IN LIST

- MAX Y-COORD OF POINTS IN LIST

- DMAX =MAX (XMAX-XMIN, YMAX -YMIN)

- NOT DEFINED
- LIST OF LENGTH NUMPTS

- LIST OF POINTS TO BE TRIANGULATED

- LIST OF LENGTH N

- UNCHANGED

- UNCHANGED

- UNCHANGED

- UNCHANGED

- UNCHANGED

- UNCHANGED

- UNCHANGED

- UNCHANGED

- BIN NUMBERS FOR EACH POINT TO BE TRIANGULATED
- LIST OF LENGTH NUMPTS

- LIST OF POINTS TO BE TRIANGULATED
- POINTS ORDERED SUCH THAT CONSECUTIVE POINTS ARE CLOSE

TO ONE ANOTHER IN THE X-Y PLANE

SUBROUTINES CALLED:

QSORTI

44 Adv. Eng. Software, 1987, Vol. 9, No. 1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

c
C PROGRAMMER:
C - - - - - - - - - -

C
c S W SLOAN
C
C LAST MODIFIED:
C
C
C 30 JAN 1986 S W SLOAN
cJJIJJJIJJJIJJJJJJ
C

INTEGER LIST(1),BIN(m),N,I,J,K,P,NDIV

REAL X(m),Y(m),FACTX,FACTY,XMIN,XMAX,YMIN,YMAX,DMAX

COMPUTE NUMBER OF BINS IN X-Y DIRECTIONS
COMPUTE INVERSE OF BIN SIZE IN X-Y DIRECTIONS

NDIV=NINT(REAL(N)mIO.25)
FACTX=REAL(NDIV)/((XMAX-XMIN)ml.OI/DMAX)
FACTY=REAL(NDIV)/((YMAX-YMIN)mI.OI/DMAX)

ASSIGN BIN NUMBERS TO EACH POINT

DO 10 K=I,N
P:LIST(K)
I=INT(Y(P)UFACTY)
J=INT(X(P)mFACTX)
IF(MOD(I92).E0.O)THEN

BIN(P)=IINDIV+J÷I
ELSE

BIN(P)=(I+I)mNDIV-J
END IF

10 CONTINUE

SORT POINTS IN ASCENDING SEQUENCE OF BIN NUMBER

CALL QSORTI(N,LIST,BIN)

END

SUBROUTINE OSORTI(N,LIST,KEY)

C
ClJJlJJJJJJJJJJJJJiJJJJJJlJJJJJJJJJJJJJJJJJJJJJJJlJJJJJiJJl iJJJJJJJJJJJJ
C SUBROUTINE GSORTI
C

PURPOSE:

ORDER LIST OF INTEGERS IN ASCENDING SEQUENCE OF THEIR INTEGER KEYS

INPUT:

'N'

'LIST'

'KEY'

OUTPUT~

iN '

'LIST'

,KEY,

NOTES •

- POSITIVE INTEGER GIVING LENGTH OF LIST

- LIST OF INTEGERS TO BE SORTED
- LIST OF LENGTH N

- LIST OF INTEGER KEYS
- LIST OF LENGTH GE N

- UNCHANGED

- LIST OF INTEGERS SORTED IN ASCENDING SEOUENCE OF THEIR
KEYS

- UNCHANGED

- USES QUICKSORT ALGORITHM~ EFFICIENT FOR 'N' VALUES GREATER THAN
ABOUT 12 (ALTHOUGH MAY BE SYST~H DEPENDENT)

- ROUTINE SORTS LISTS UP TO LENGTH 2mmMAXSTK

PROGR/24MERz

Adv. Eng. Software, 1987, Vol. 9,No. 1 45

C

c
c G T HOULSBY
c
c LAST MODIFIED:
C

c
C 7 MAY 1985
C

S W SLOAN

cjjjjjjjjjjj|jjjjjJJ
c

INTEGER LIST(m), KEY (w), N, LL, LR, LM, NL, NR, LTEMP, STKTOP,MAXSTK, GUESS

C
PARAMETE R (MAXSTK = 32)

C
INTEGER LSTACK(MAXSTK), RSTACK(MAXSTK)

C
LL= 1
LR=N
ST](TOP= 0

10 IF(LL. LT. LR) THEN
NL:LL
NR=LR
LM=(LL+LR)/2
GUESS=KEY (LIST(LM))

c
C FIND KEYS FOR EXCHANGE
C

20 IF (KEY (LIST(NL)). LT. GUESS) THEN
NL=NL+I
GOTO 20

END IF
30 IF (GUESS. LT.KEY (LIST(NR))) THEN

NR=NR- 1

GOTO 30
END IF
IF(HL. LT. (NR- I))THEN

LTEMP= LI ST (NL)
LIST(HL) =LIST(NR)
LIST(NR) =LT~P
NL=NL+I
NR=NR-I
GOTO 20

END IF
C
C DEAL WITH CROSSING OF POINTERS
C

IF(NL. LE. NR) THEN
IF(NL. LT. NR) THEN

LTEMP= LI ST (NL)
LIST(NL) =LIST(NR)
LIST(NR) =LTEMP

END IF
NL=NL+I
NR=NR-1

END IF

C
C SELECT SUB-LIST TO BE PROCESSED NEXT

C
STKTOP=STKTOP+ 1
IF(NR • LT, LM) THEN

LSTACK (STK TOP) =HL
RSTACK (STKTOP) =LR
LR=NR

ELSE
LSTACK (STK TOP) = LL
RSTACK (STK TOP) = NR
LL=NL

END IF
GOTO 10

END IF
C
C PROCESS ANY STACKED SUB-LISTS

C
IF (STKTOP • NE. 0) THEN

LL=LSTACK (STKTOP)
LR=RSTACK(STKTOP)
STKTOP=STKTOP- 1
GOTO 10

END IF

END

4 6 Adv. Eng. Software, 1987, Vol. 9, No. 1

c
SUBROUTINE D ELAUN (NUM PTS, N, X, Y, LI ST, STACK, V, E, NUMTRI)

C

C
C SUBROUTINE DELAUN
C
C PURPOSE :

C ---

C
C ASSEMBLE DELAUNAY TRIANGULATION

C
C INPUT :
C

C
C 'NUMPTS' - TOTAL NUMBER OF POINTS IN DATA SET

C
C 'N' - TOTAL NUMBER OF POINTS TO BE TRIANGULATED
C - N LE NUMPTS

C
C 'X' - X-COORDS OF ALL POINTS IN DATA SET

C - X-COORD OF POINT I GIVEN BY X(I)
C - IF POINT IS IN LIST, COORDINATE MUST BE NORMALISED
C SUCH THAT X=(X-XMIN)/DMAX
C - LIST OF LENGTH NUMPT-~-3
C - LAST THREE LOCATIONS ARE USED TO STORE X-COORDS OF
C SUPERTRIANGLE VERTICES IN SUBROUTINE DELAUN
C
C 'Y' - Y-COORDS OF ALL POINTS IN DATA SET

C - Y-COORD OF POINT I GIVEN BY Y(I)

C - IF POINT IS IN LIST, COORDINATE MUST BE NORMALISED
C SUCH THAT Y=(Y-YMIN)/DMAX

C - LIST OF LENGTH NUMPTS+3

C - LAST THREE LOCATIONS ARE USED TO STORE Y-COORDS OF
C SUPERTRIANGLE VERTICES IN SUBROUTINE DELAUN

C
C 'LIST' - LIST OF POINTS TO BE TRIANGULATED
C - POINTS ARE ORDERED SUCH THAT CONSECUTIVE POINTS ARE
C CLOSE TO ONE ANOTHER IN THE X-Y PLANE
C - LIST OF LENGTH N
C
C 'STACK' - NOT DEFINED

C - LIST OP LENGTH NUMPTS
C - USED AS WORKSPACE

C
C 'V' - NOT DEFINED

C - V HAS DIMENSIONS V(3,RmN÷I), WHERE N IS THE NUMBER OF

C POINTS TO BE TRIANGULATED
C
C 'E' - NOT DEFINED

C - E HAS DIMENSIONS E(3,2WN+I), WHERE N IS THE NUMBER OF
C POINTS TO BE TRIANGULATED
C
C 'NUMTRI' - NOT DEFINED

C
C OUTPUT:

C

C
C ' N U M P T S ' - UNCHANGED
C
C 'N' - UNCHANGED

C
C 'X' - UNCHANGED

C
C 'Y ' - UNCHANGED
C
C 'LIST' - UNCHANGED
C
C 'STACK' - NOT DEFINED

C
C 'V' - VERTEX ARRAY FOR TRIANGULATION
C - VERTICES LISTED IN ANTICLOCKWISE SEQUENCE

C - VERTICES FOR TRIANGLE J ARE FOUND IN V(I,J) FOR I=1,2,3

C AND J= 1,2, • • • ~NUMTRI

C - FIRST VERTEX IS AT POINT OF CONTACT OF FIRST AND THIRD
C ADJACENT TRIANGLES
C

C 'E' - ADJACENCY ARRAY FOR TRIANGULATION

C - TRIANGLES ADJACENT TO J ARE FOUND IN E(I,J) FOR I=1,2,3
C J=I,2,...,NUMTRI

C - ADJACENT TRIANGLES LISTED IN ANTICLOCKWISE SEQUENCE
C - ZERO DENOTES NO ADJACENT TRIANGLE
C
C 'NUMTRI' - NUMBER OF TRIANGLES IN FINAL TRIANGULATION

C - NUMTRI L T 2 m N + l

Adv, Eng. Software, 1987, Vol, 9,No. 1 4 7

C
C SUBROUTINES CALLED:
C

C
C PUSH
C
C FUNCTIONS CALLED:
C

C
C TRILOC,EDG,SWAP,POP
C
C PROGRAMMER:
C

C
C S W SLOAN
C
C LAST MODIFIED:

C
C
C 30 JAN 1986 S W SLOAN
C
cJJJ
C

INTEGER V(3pa),N,I,T,LIST(W),NUMTRI,P,E(3pe),MAXSTK,TOPSTK,
+ VI,V2,V3,L,R,POP,ApB,C,ERL,ERA,ERB,EDG,TRILOC,N~PTS,
+ TSTRT,TSTOP,STACK(m)

REAL X(u),Y(1),XP,YP,CO0000,COOIO0

LOGICAL SWAP

PARAHETER(CO0000=0.O,
+ C00100=100.0)

DEFINE VERTE~ AND ADJACENCY LISTS FOR SUPERTRIANOLE

VI=NUMPTS+I
V2=NUMPTS+2
V3=NUHPTS+3
V(1,1)=Vl
V(2,1)=V2
V(3,1)=V3
E(1~1)=0
E(2,1)=0
E(3,1)=0

SET COORDS OF SUPERTRIANGLE

X(V1)=-COOIO0
X(V2)= C00100
x(v3)= COOOOO
Y(V1)=-COOIO0
Y(V2)=-CO0100
Y(V3)= C00100

LOOP OVER EACH POINT

N~TRI=I
TOPSTK=O
MAXSTK=N~IPTS
DO 100 I=I,N

P=LIST(I)
XP=X(P)
YP=Y(P)

LOCATE TRIANGLE IN WHICH POINT LIES

T=TRILOC(XP,YP,X,X,V,E~WdMTRI)

CREATE N~ VERTEX AND ADJACENCY LISTS FOR TRIANGLE T

A=E(1,T)
B=E(2,T)
C=E(3,T)
Vl=V(lpT)
V2=V(2,T)
V3=V(3,T)
V(1,T)=P
V(2,T)=V1
V(3,T)=V2
E(I~T)=NUHTRI+2
E(2,T)=A
E(3,T)=NUMTRI+I

CREATE NEW TRIANGLES

48 AcTv. Eng. Software, 1987, Vol. 9, No. 1

50

NUMTRI=NUMTRI+I
V(I,NDI4TRI)=P
V(2,N~4TRI)=V2
V(3,NtR4TRI)=V3
E(I,N~4TRI)=T
E(2,NUMTRI)=B
E(3,Nt~4TRI)=NUMTRI+I
NUMTRI=ND~4TRI+I
V(I,NUMTRI)=P
V(2,NUMTRI)=V3
V(3,NIB4TRI)=VI
E(I,NUMTRI)=NUMTRI-I
E(2,NUMTRI)=C
E(3,NUMTRI):T

PUT EACH EDGE OF TRIANGLE T ON STACK
STORE TRIANGLF~ ON LEFT SIDE OF EACH EDGE
UPDATE ADJACENCY LISTS FOR ADJACENT TRIANGLES
ADJACENCY LIST FOR ELEMENT A DOES NOT NEED TO BE UPDATED

IF(A.NE.O)THEN
CALL PUSH(T,MAXSTK,TOPSTK,STACK)

END IF
IF(B.NE.O)THEN

E(EDG(B,T,E),B)=NUMTRI-I
CALL PUSH(NUMTRI-I,MAXSTK,TOPSTK,STACK)

END IF
IF(C.NE.O)THEN

E(EDG(C,T,E),C):NUMTRI
CALL PUSH(NUMTRI,MAXSTK,TOPSTK,STACK)

END IF

LOOP WHILE STACK IS NOT EMPTY

IF(TOPSTK.GT.0)THEN
L=POP(TOPSTK,STACK)
R=E(2,L)

CHECK IF NEW POINT IS IN CIRCUMCIRCLE FOR TRIANGLE R

ERL=EDG(R,L,E)
ERA=MOD(ERL,3)+I
ERS=MOD(ERA,3)÷I
VI=V(ERL,R)
V2=V(ERA,R)
V3=V(ERB,R)
IF(SWAP(X(VI),Y(VI),X(V2),Y(V2),X(V3),Y(V3),XP,yP))THEN

NEW POINT IS INSIDE CIRCUMCIRCLE FOR TRIANGLE R
SWAP DIAGONAL FOR CONVEX qUAD FORMED BY P-V2-V3-V1

A:E(ERA,R)
B=E(ERB,R)
C=E(3,L)

UPDATE VERTEX AND ADJACENCY LIST FOR TRIANGLE L

V(3,L)=V3
E(2~L)=A
E(3,L)=R

UPDATE VERTEX AND ADJACENCY LIST FOR TRIANGLE R

V(1,R)=P
V(2,R)=V3
V(3,R)=Vl
E(1,R)=L
E(2,R)=B
E(3,R)=C

PUT EDGES L-A AND R-B ON STACK
UPDATE ADJACENCY LISTS FOR TRIANGLES A AND C

IF(A°NE.0)THEN
E(EDG(A,R,E),A)=L
CALL PUSH(L,MAXSTK, TOPSTK p STACK)

END IF
IF(B° NE.O)THEN

CALL PUSH(R,MAXSTK, TOPSTK, STACK)
END IF
IF(C. NE. O) THEN

E(EDG(C)L,E) ,C) =R
END IF

END IF

Adv. Eng. Software, 1987, Vol. 9, No. 1 4 9

GOTO 50
END IF

100 CONTINUE

CHECK CONSISTENCY OF TRIANGULATION

IF(NUMTRI.NE.21N+I)THEN
WRITE(6,'(''OtUmERROR IN SUBROUTINE DELAUNmW~'') ')
WRITE(6,'('' m'tINCORRECT NUMBER OF TRIANGLS FORMEDI~n'*) ')
STOP

END IF

REMOVE ALL TRIANGLES CONTAINING SUPERTRIANGLE VERTICES
FIND FIRST TRIANGLE TO BE DELETED (TRIANGLE T)
UPDATE ADJACENCY LISTS FOR TRIANGLES ADJACENT TO T

DO 120 T=I,NUMTRI
IF((V(I,T).GT.NUMPTS).OR.

+ (V(2,T).GT.NUMPTS).OR.
+ (V(3,T).GT.NUMPTS))THEN

DO 110 I=1,3
A=E(I,T)
IF(A.NE.O)THEN

E(EDO(A,T,E),A)=O
END IF

110 CONTINUE
GOTO 125

END IF
120 CONTINUE
125 TSTRT=T+I

TSTOP=NUMTRI
N~TRI=T-I

REMOVE TRIANGLES

DO 200 T=TSTRT,TSTOP
IF((V(I,T).OT.NUMPTS).OR.

+ (V(2,T).GT.NL~PTS).OR.
+ (V(3,T).GT.NVMPTS))THEN

TRIANGLE T IS TO BE DELETED
UPDATE ADJACENCY LISTS FOR TRIANGLES ADJACENT TO T

130

DO 130 I=1,3
A=E(I,T)
IF(A.NE.O)THEN

E(EDG(A,T,E),A)=O
END IF

CONTINUE
ELSE

TRIANGLE T IS NOT TO BE DELETED
PUT TRIANGLE T IN PLACE OF TRIANGLE NVMTRI
UPDATE ADJACENCY LISTS FOR TRIANGLES ADJACENT TO T

NUMTRI=NUMTRI+I
DO 140 I=I,3

A=E(I,T)
E(I,NUMTRI)=A
V(I,NUMTRI)=V(I,T)
IF(A.NE.O)~EN

E(~(A,T,E),A)=NUMTRI
END IF

140 CONTINUE
ENDIF

200 CONTINUE

END

SUBROUTINE PUSH (ITEM, MAXSTK, TOPSTK, STACK)
C
CI,i~llIIii~I~NJII|OIR,IImllmQIQIW~JmllIIJlJllli~ll,lJWm,JlJi,,J,,IRm

c
c SUBROUTINE PUSH
C
C PURPOSE :
C
C
C
C
C
C

PLACE ITEM ON LIFO STACK AND INCR~4ENT STACK SIZE

INPUT:

50 Adv. Eng. Software, 1987, Pro/. 9, No. 1

C
C
C
C

C

C
C

C
C
C
C
C
C
C

C
C

C
C
C
C
C
C

C
C
C
C
C
C

C
C
C
C

C

'ITEM' - ITEM TO BE PLACED AT TOP OF LIFO STACK

'MAXSTK' - MAX SIZE OF STACK

'TOPSTK' - POINTER INDICATING CURRENT SIZE OF STACK
- MUST BE LT MAXSTK WHEN THIS ROUTINE IS CALLED

- LIFO STACK 'STACK'

OUTPUT:

'ITEM' - UNCHANGED

'MAXSTE' - UNCHANGED

'TOPSTK' - POINTER INDICATING CURRENT SIZE OF STACK
- NEW VALUE = OLD VALUE ÷ I

'STACK' - LIFO STACK WITH ITEM ADDED
- STACK(TOPSTK)=IT~

PROGRAMMER:

S W SLOAN

LAST MODIFIED:

30 JAN 1986 S W SLOAN

cJJ
c

INTEGER TOPSTK,MAXSTK,STACK(i), ITEM
C

TOPSTK = TOPSTK+ 1
IF (TOP STK • GT. MAXSTK) THEN

WRITE(6, ' (' ' OIIeERROR IN SUBROUTINE PUSH mlm ' ') ')
WRITE(6, ' (' ' ImlSTACK OVERFLOW ~i ' ') ')
STOP

ELSE
STACK (TOPSTK) =ITEM

END IF

END

FUNCTION POP (TOPSTK, STACK)

C
CI~glW,lJIImIIm~I~li~J~m~IDilli,~II~JnQ~ JllmJi~Ji~RimDJJQWlJlgi~IIme~i

C
C
C
C
C
C
C

C
C
C
C

C
C
C
C
C
C

C

C
C
C
C

C
C
C

C
C
C

C
C
C

FUNCTION POP

PURPOSE:

R~4OVE ITEM FROM LIFO STACK JL~D DECR~4ENT STACK SIZE

IN PU T:

'TOPSTK' - POINTER INDICATING CURRENT SIZE OF STACK
- MUST BE OT ZERO WHEN THIS FUNCTION IS CALLED

'STACK' - LIFO STACK

'POP' - NOT DEFINED

OUTPUT:

'TOPSTK' - POINTER INDICATING SIZE OF STACK

- NEW VALUE = OLD VALUE - I

'STACK' - UNCHANGED

'POP' - ITEM AT TOP OF STACK WHEN FUNCTION WAS CALLED

PROGRAMMER:

Adv. Eng. Software, 1987, Vol. 9, No. 1 51

c
C
c
C
C
C
c
C
C
C
C
C
C
C
C
C
C
c

C
C

c
C
C
c
C
c
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
C
C
c
C

C S W SLOAN
C
C LAST MODIFIED:
C
C
C 30 JAN 1986 S W SLOAN

C

C
INTEGER POP,TOPSTK,STACK(~)

C
IF(TOPSTK.GT.0)THEN

POP=STACK(TOPSTK)
TOPSTK=TOPSTK-1

ELSE
WRITE(6,'("OI~IERROR IN FUNCTION POP~I~') ')
WRITE(6,'(" ~'SSTACK UNDERFLOWe~s'') ')
STOP

END IF

END

FUNCTION EDG(L,K,E)
C
CJlJOmlJllIR~I,ii~JIQII,i,lm,g,l,i~I,,,i,,~IQIIimW~i~llJ~llIQiJ%lii~I

C
c FUNCTION EDO

PURPOSE:

FIND EDGE IN TRIANGLE L WHICH IS ADJACENT TO TRIANGLE K

INPUT:

ILl

rEV

NUMBER OF TRIANGLE

NUHBER OF ADJACENT TRIANGLE

ADJACENCY ARRAY FOR TRIANGULATION
TRIANGLES ADJACENT TO J ARE FOUND IN E(I,J) FOR I=I,2,3

ADJACENT TRIANGLES LISTED IN ANTICLOCKWISE SEQUENCE
ZERO DENOTES NO ADJACENT TRIANGLE
E HA3 DIMENSIONS E(3,21N+1), WHERE N IS THE NUMBER OF

POINTS TO BE TRIANGULATED

NOT DEFINED 'EDG'

OUTPUT:

'L' - UNCHANGED

'K t - UNCHANGED

'E' - UNCHANGED

'EDG' - N~BER OF EDGE IN TRIANGLE L WHICH IS ADJACENT TO
TRIANGLE K

- E(EDO, L) =K

PROGRAMMER :

S W 5LOAN

LAST MODIFIED:

30 JAN 1986 S W SLOAN

cJJ
C

INTEGER L,K,I,E(3, m),EDG

DO 10 I=1,3
IF(E(I,L).EQ.K)THEN

EDG=I
RETURN

END IF
10 CONTINUE

52 Adv. Eng. Software, 1987, Vol. 9, No. 1

C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

WRITE(6,'("OneERROR IN FUNCTION EDGmmm") ')
WRITE(6,'('' mmmEL~ENTS NOT ADJACENTImm") ')
STOP

END

FUNCTION TRILOC(XP,YP,X,Y,V,E,NUMTRI)
CJJ"

FUNCTION TRILOC

PURPOSEz

LOCATE TRIANGLE WHICH ENCLOSES POINT WITH COORD3 (XPpYP) USING
LANSON'S SEARCH

INPUT:

'XP,YP'

tX,y'

tVt

VEt'

'NUMTRI' -

'TRILOC' -

OUTPUT:

'XP,YP'

'XpY'

tV1

X-Y COORDINATES OF POINT

X-Y COORDINATES OF POINTS AND SUPERTRIANGLE VERTICES

LISTS OF LENGTH NUMPTS+3
LAST THREE LOCATIONS USED TO STORE COORDS OF
SUPERTRIANGLE

VERTEX ARRAY FOR TRIANGULATION
VERTICES LISTED IN ANTICLOCk'WISE SEQUENCE
VERTICES FOR TRIANGLE J ARE FOUND IN V(I,J) FOR I=I,2p3
FIRST VERTEX IS AT POINT OF CONTACT OF FIRST AND THIRD
ADJACENT TRIANGLES
V HAS DIMENSIONS V(3,2"N+I), WHERE N IS THE NUMBER OF

POINTS TO BE TRIANGULATED

ADJACENCY ARRAY FOR TRIANGULATION
TRIANGLES ADJACENT TO J ARE FOUND IN E(I,J) FOR I=I,2,3
ADJACENT TRIANGLES LISTED IN ANTICLOCKWISE SEQUENCE
ZERO DENOTES NO ADJACENT TRIANGLE
E HAS DIMENSIONS E(3,2"N÷1), WHERE N IS THE NUMBER OF
POINTS TO BE TRIANGULATED

NUMBER OF TRIANGLES IN TRIANGULATION

NOT DEFINED

- UNCHANGED

- UNCHANGED

- UNCHANGED

'E' - UNCHANGED

'NL~TRI' - UNCHANGED

'TRILOC' - NUMBER OF TRIANGLE CONTAINING POINT WITH COORDS (XP,YP)

PROGRAMMER:

S W SLOAN

LAST MODIFIED:

30 JAN 1986 S W SLOAN

cJJJ
C

INTEGER V(3~I),E(3~i)~NUMTRItVIgV2,I,T,TRILOC

REAL X(I),y(1),XP,yP

T:ND~TRI
10 CONTINUE

DO 20 I:1,3
VI:V(I,T)
V2:V(MOD(I,3)+I,T)

Adv, Eng. Software, 1987, Vol. 9, No. 1 53

IF((Y(VI)-YP)*(X(V2)-XP).GT.(X(VI)-XP)*(Y(V2)-YP))THEN
T=E(I,T)
OOTO 10

END IF
20 CONTINUE

TRIANGLE HAS BEEN FOUND

TRILOG=T

END

FUNCTION SWAP(XI,YI,X2,Y2,X3,Y3,XP,YP)

cJJJ
C
C FUNCTION SWAP
C
C PURPOSE:
C

C
C CHECK IF POINT WITH COORDS (XP,YP) LIES INSIDE THE CIRCUMCIRCLE
C FOR THE TRIANGLE WITH COORDS (X],YI), (X2,Y2), (X3,Y3) USING
C THE ALGORITHM OF CLINE AND RENKA WHICH ALLOWS FOR ROUNDOFF ERROR
C
C
C

INPUT:

'XlpY1'
'X2,Y2'
'X3,Y3'

'XP~YP'

'SWAP'

OUTPUT:

'XI,YI'
'X2,Y2'
'X3,Y3'

'XP,YP'

'SWAP'

- COORDS OF VERTICES DEFINING TRIANGLE
- VERTICES LISTED IN ANTICLOCKWISE SEQUENCE AND ORDERED

SUCH THAT P-V2-V3-VI DEFINE A QUADRILATERAL

- COORDS OF POINT TO BE TESTED

- NOT DEFINED

- UNCHANGED

- UNCHANGED

- SET TO .TRUE. IF POINT LIES INSIDE CIRCUMCIRCLE
- SET TO .FALSE. IF POINT LIES ON OR OUTSIDE CIRCU~IRCLE

PROGRAMMER:

S W SLOAN

LAST MODIFIED:

30 JAN 1986 S W SLOAN

cJJJ
C

REAL XI,Y1,X2,Y2,X3,Y3,XP~YP,X13,Y13,X23,Y23,XIP,yIP,X2P,Y2P,COSA,
+ COSB,SINA,SINE,CO000O

LOGICAL SWAP

PARAMETER(COO000:O.O)

X13=X1-X3
YI3=YI-Y3
X23=X2-X3
¥23=¥2-¥3
XIF=X1-XP
YIP=yI-YP
X2P=X2-XP
Y2P=Y2-YP
COSA=XI31X23+YI3*Y23
COSB=X2PXIF+YIPOY2P
IF((COSA.GE.COOOOO).AND.(COSB.GE.COOOOO))THEN

SWAP=.FALSE.
ELSEIF((COSA.LT.COOOOO).AND.(COSB.LT.COOOOO))THEN

SWAP=.TRUE.
ELSE

54 Adv. Eng. Software, 1987, Vol. 9, No. 1

ENDIF

END

SINA=X 13e¥23-X23eY 13
SINB--X2PeY I P-X I PeY2P
IF ((SINAmCOSB+S INBmCOS A) • LT. C00000) THEN

SWAP= • TRUE.
ELSE

SWAP=. FALSE.
END IF

Adv. Eng. Software, 1987, Vol. 9, No. 1 55

